{"title":"dg-Hecke 对偶与张量积","authors":"Peter Schneider, Claus Sorensen","doi":"10.1093/imrn/rnae156","DOIUrl":null,"url":null,"abstract":"We continue our study of the monoidal category $D(G)$ begun in [ 12]. At the level of cohomology we transfer the duality functor $R\\underline{\\operatorname{Hom}}(-,k)$ to the derived category of dg-modules $D(H_{U}^{\\bullet })$. In the process we develop a more general and streamlined approach to the anti-involution $\\mathscr J$ from [ 8]. We also verify that the tensor product on $D(G)$ corresponds to an operadic tensor product on the dg-side (cf [ 5]). This uses a result of Schnürer on dg-categories with a model structure.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"dg-Hecke Duality and Tensor Products\",\"authors\":\"Peter Schneider, Claus Sorensen\",\"doi\":\"10.1093/imrn/rnae156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue our study of the monoidal category $D(G)$ begun in [ 12]. At the level of cohomology we transfer the duality functor $R\\\\underline{\\\\operatorname{Hom}}(-,k)$ to the derived category of dg-modules $D(H_{U}^{\\\\bullet })$. In the process we develop a more general and streamlined approach to the anti-involution $\\\\mathscr J$ from [ 8]. We also verify that the tensor product on $D(G)$ corresponds to an operadic tensor product on the dg-side (cf [ 5]). This uses a result of Schnürer on dg-categories with a model structure.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We continue our study of the monoidal category $D(G)$ begun in [ 12]. At the level of cohomology we transfer the duality functor $R\underline{\operatorname{Hom}}(-,k)$ to the derived category of dg-modules $D(H_{U}^{\bullet })$. In the process we develop a more general and streamlined approach to the anti-involution $\mathscr J$ from [ 8]. We also verify that the tensor product on $D(G)$ corresponds to an operadic tensor product on the dg-side (cf [ 5]). This uses a result of Schnürer on dg-categories with a model structure.