dg-Hecke 对偶与张量积

Pub Date : 2024-07-16 DOI:10.1093/imrn/rnae156
Peter Schneider, Claus Sorensen
{"title":"dg-Hecke 对偶与张量积","authors":"Peter Schneider, Claus Sorensen","doi":"10.1093/imrn/rnae156","DOIUrl":null,"url":null,"abstract":"We continue our study of the monoidal category $D(G)$ begun in [ 12]. At the level of cohomology we transfer the duality functor $R\\underline{\\operatorname{Hom}}(-,k)$ to the derived category of dg-modules $D(H_{U}^{\\bullet })$. In the process we develop a more general and streamlined approach to the anti-involution $\\mathscr J$ from [ 8]. We also verify that the tensor product on $D(G)$ corresponds to an operadic tensor product on the dg-side (cf [ 5]). This uses a result of Schnürer on dg-categories with a model structure.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"dg-Hecke Duality and Tensor Products\",\"authors\":\"Peter Schneider, Claus Sorensen\",\"doi\":\"10.1093/imrn/rnae156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue our study of the monoidal category $D(G)$ begun in [ 12]. At the level of cohomology we transfer the duality functor $R\\\\underline{\\\\operatorname{Hom}}(-,k)$ to the derived category of dg-modules $D(H_{U}^{\\\\bullet })$. In the process we develop a more general and streamlined approach to the anti-involution $\\\\mathscr J$ from [ 8]. We also verify that the tensor product on $D(G)$ corresponds to an operadic tensor product on the dg-side (cf [ 5]). This uses a result of Schnürer on dg-categories with a model structure.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们继续[ 12]中开始的对单元范畴$D(G)$的研究。在同调层面上,我们把对偶函子 $R\underline{operatorname{Hom}}(-,k)$ 转移到了 dg 模块的派生范畴 $D(H_{U}^{\bullet})$。在这个过程中,我们开发了一种更通用、更精简的方法来处理[ 8] 中的反卷积 $\mathscr J$。我们还验证了 $D(G)$ 上的张量积对应于 dg 边上的操作张量积(参见 [ 5])。这使用了施努勒关于具有模型结构的 dg 范畴的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
dg-Hecke Duality and Tensor Products
We continue our study of the monoidal category $D(G)$ begun in [ 12]. At the level of cohomology we transfer the duality functor $R\underline{\operatorname{Hom}}(-,k)$ to the derived category of dg-modules $D(H_{U}^{\bullet })$. In the process we develop a more general and streamlined approach to the anti-involution $\mathscr J$ from [ 8]. We also verify that the tensor product on $D(G)$ corresponds to an operadic tensor product on the dg-side (cf [ 5]). This uses a result of Schnürer on dg-categories with a model structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信