dg-Hecke 对偶与张量积

IF 0.9 2区 数学 Q2 MATHEMATICS
Peter Schneider, Claus Sorensen
{"title":"dg-Hecke 对偶与张量积","authors":"Peter Schneider, Claus Sorensen","doi":"10.1093/imrn/rnae156","DOIUrl":null,"url":null,"abstract":"We continue our study of the monoidal category $D(G)$ begun in [ 12]. At the level of cohomology we transfer the duality functor $R\\underline{\\operatorname{Hom}}(-,k)$ to the derived category of dg-modules $D(H_{U}^{\\bullet })$. In the process we develop a more general and streamlined approach to the anti-involution $\\mathscr J$ from [ 8]. We also verify that the tensor product on $D(G)$ corresponds to an operadic tensor product on the dg-side (cf [ 5]). This uses a result of Schnürer on dg-categories with a model structure.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"333 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"dg-Hecke Duality and Tensor Products\",\"authors\":\"Peter Schneider, Claus Sorensen\",\"doi\":\"10.1093/imrn/rnae156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue our study of the monoidal category $D(G)$ begun in [ 12]. At the level of cohomology we transfer the duality functor $R\\\\underline{\\\\operatorname{Hom}}(-,k)$ to the derived category of dg-modules $D(H_{U}^{\\\\bullet })$. In the process we develop a more general and streamlined approach to the anti-involution $\\\\mathscr J$ from [ 8]. We also verify that the tensor product on $D(G)$ corresponds to an operadic tensor product on the dg-side (cf [ 5]). This uses a result of Schnürer on dg-categories with a model structure.\",\"PeriodicalId\":14461,\"journal\":{\"name\":\"International Mathematics Research Notices\",\"volume\":\"333 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematics Research Notices\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae156\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae156","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们继续[ 12]中开始的对单元范畴$D(G)$的研究。在同调层面上,我们把对偶函子 $R\underline{operatorname{Hom}}(-,k)$ 转移到了 dg 模块的派生范畴 $D(H_{U}^{\bullet})$。在这个过程中,我们开发了一种更通用、更精简的方法来处理[ 8] 中的反卷积 $\mathscr J$。我们还验证了 $D(G)$ 上的张量积对应于 dg 边上的操作张量积(参见 [ 5])。这使用了施努勒关于具有模型结构的 dg 范畴的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
dg-Hecke Duality and Tensor Products
We continue our study of the monoidal category $D(G)$ begun in [ 12]. At the level of cohomology we transfer the duality functor $R\underline{\operatorname{Hom}}(-,k)$ to the derived category of dg-modules $D(H_{U}^{\bullet })$. In the process we develop a more general and streamlined approach to the anti-involution $\mathscr J$ from [ 8]. We also verify that the tensor product on $D(G)$ corresponds to an operadic tensor product on the dg-side (cf [ 5]). This uses a result of Schnürer on dg-categories with a model structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信