{"title":"隐式和显式双线性项的 RLT 切分的高效分离","authors":"Ksenia Bestuzheva, Ambros Gleixner, Tobias Achterberg","doi":"10.1007/s10107-024-02104-0","DOIUrl":null,"url":null,"abstract":"<p>The reformulation–linearization technique (RLT) is a prominent approach to constructing tight linear relaxations of non-convex continuous and mixed-integer optimization problems. The goal of this paper is to extend the applicability and improve the performance of RLT for bilinear product relations. First, we present a method for detecting bilinear product relations implicitly contained in mixed-integer linear programs, which is based on analyzing linear constraints with binary variables, thus enabling the application of bilinear RLT to a new class of problems. Strategies for filtering product relations are discussed and tested. Our second contribution addresses the high computational cost of RLT cut separation, which presents one of the major difficulties in applying RLT efficiently in practice. We propose a new RLT cutting plane separation algorithm which identifies combinations of linear constraints and bound factors that are expected to yield an inequality that is violated by the current relaxation solution. This algorithm is applicable to RLT cuts generated for all types of bilinear terms, including but not limited to the detected implicit products. A detailed computational study based on independent implementations in two solvers evaluates the performance impact of the proposed methods.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"26 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient separation of RLT cuts for implicit and explicit bilinear terms\",\"authors\":\"Ksenia Bestuzheva, Ambros Gleixner, Tobias Achterberg\",\"doi\":\"10.1007/s10107-024-02104-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The reformulation–linearization technique (RLT) is a prominent approach to constructing tight linear relaxations of non-convex continuous and mixed-integer optimization problems. The goal of this paper is to extend the applicability and improve the performance of RLT for bilinear product relations. First, we present a method for detecting bilinear product relations implicitly contained in mixed-integer linear programs, which is based on analyzing linear constraints with binary variables, thus enabling the application of bilinear RLT to a new class of problems. Strategies for filtering product relations are discussed and tested. Our second contribution addresses the high computational cost of RLT cut separation, which presents one of the major difficulties in applying RLT efficiently in practice. We propose a new RLT cutting plane separation algorithm which identifies combinations of linear constraints and bound factors that are expected to yield an inequality that is violated by the current relaxation solution. This algorithm is applicable to RLT cuts generated for all types of bilinear terms, including but not limited to the detected implicit products. A detailed computational study based on independent implementations in two solvers evaluates the performance impact of the proposed methods.</p>\",\"PeriodicalId\":18297,\"journal\":{\"name\":\"Mathematical Programming\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Programming\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02104-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02104-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Efficient separation of RLT cuts for implicit and explicit bilinear terms
The reformulation–linearization technique (RLT) is a prominent approach to constructing tight linear relaxations of non-convex continuous and mixed-integer optimization problems. The goal of this paper is to extend the applicability and improve the performance of RLT for bilinear product relations. First, we present a method for detecting bilinear product relations implicitly contained in mixed-integer linear programs, which is based on analyzing linear constraints with binary variables, thus enabling the application of bilinear RLT to a new class of problems. Strategies for filtering product relations are discussed and tested. Our second contribution addresses the high computational cost of RLT cut separation, which presents one of the major difficulties in applying RLT efficiently in practice. We propose a new RLT cutting plane separation algorithm which identifies combinations of linear constraints and bound factors that are expected to yield an inequality that is violated by the current relaxation solution. This algorithm is applicable to RLT cuts generated for all types of bilinear terms, including but not limited to the detected implicit products. A detailed computational study based on independent implementations in two solvers evaluates the performance impact of the proposed methods.
期刊介绍:
Mathematical Programming publishes original articles dealing with every aspect of mathematical optimization; that is, everything of direct or indirect use concerning the problem of optimizing a function of many variables, often subject to a set of constraints. This involves theoretical and computational issues as well as application studies. Included, along with the standard topics of linear, nonlinear, integer, conic, stochastic and combinatorial optimization, are techniques for formulating and applying mathematical programming models, convex, nonsmooth and variational analysis, the theory of polyhedra, variational inequalities, and control and game theory viewed from the perspective of mathematical programming.