比较恩里克曲面一点炸开的卡勒锥和交点锥

Shengzhen Ning
{"title":"比较恩里克曲面一点炸开的卡勒锥和交点锥","authors":"Shengzhen Ning","doi":"arxiv-2407.10217","DOIUrl":null,"url":null,"abstract":"We follow the study by Cascini-Panov on symplectic generic complex structures\non Kahler surfaces with $p_g=0$, a question proposed by Tian-Jun Li, by\ndemonstrating that the one-point blowup of an Enriques surface admits\nnon-Kahler symplectic forms. This phenomenon relies on the abundance of\nelliptic fibrations on Enriques surfaces, characterized by various invariants\nfrom algebraic geometry. We also provide a quantitative comparison of these\ninvariants to further give a detailed examination of the distinction between\nKahler cone and symplectic cone.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing Kahler cone and symplectic cone of one-point blowup of Enriques surface\",\"authors\":\"Shengzhen Ning\",\"doi\":\"arxiv-2407.10217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We follow the study by Cascini-Panov on symplectic generic complex structures\\non Kahler surfaces with $p_g=0$, a question proposed by Tian-Jun Li, by\\ndemonstrating that the one-point blowup of an Enriques surface admits\\nnon-Kahler symplectic forms. This phenomenon relies on the abundance of\\nelliptic fibrations on Enriques surfaces, characterized by various invariants\\nfrom algebraic geometry. We also provide a quantitative comparison of these\\ninvariants to further give a detailed examination of the distinction between\\nKahler cone and symplectic cone.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.10217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

李天俊提出了一个问题:恩里克曲面的单点炸裂会产生非卡勒交响形式,继卡斯基尼-帕诺夫(Cascini-Panov)研究p_g=0$的卡勒曲面上的交响泛复结构之后,我们证明恩里克曲面的单点炸裂会产生非卡勒交响形式。这一现象依赖于恩里克曲面上丰富的椭圆纤度,这些纤度以代数几何中的各种不变式为特征。我们还对这些不变式进行了定量比较,进一步详细研究了卡勒锥和交点锥之间的区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing Kahler cone and symplectic cone of one-point blowup of Enriques surface
We follow the study by Cascini-Panov on symplectic generic complex structures on Kahler surfaces with $p_g=0$, a question proposed by Tian-Jun Li, by demonstrating that the one-point blowup of an Enriques surface admits non-Kahler symplectic forms. This phenomenon relies on the abundance of elliptic fibrations on Enriques surfaces, characterized by various invariants from algebraic geometry. We also provide a quantitative comparison of these invariants to further give a detailed examination of the distinction between Kahler cone and symplectic cone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信