{"title":"枕头套中沉浸曲线的内态性","authors":"Christopher M. Herald, Paul Kirk","doi":"arxiv-2407.11247","DOIUrl":null,"url":null,"abstract":"We examine the holonomy-perturbed traceless SU(2) character variety of the\ntrivial four-stranded tangle {p_1,p_2,p_3,p_4} X [0,1] in S^2 X [0,1] equipped\nwith a strong marking, either an earring or a bypass. Viewing these marked\ntangles as endomorphisms in the cobordism category from the four-punctured\nsphere to itself, we identify the images of these endomorphisms in the\nWeinstein symplectic partial category under the partially defined\nholonomy-perturbed traceless character variety functor. We express these\nendomorphisms on immersed curves in the pillowcase in terms of doubling and\nfigure eight operations and prove they have the same image.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An endomorphism on immersed curves in the pillowcase\",\"authors\":\"Christopher M. Herald, Paul Kirk\",\"doi\":\"arxiv-2407.11247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the holonomy-perturbed traceless SU(2) character variety of the\\ntrivial four-stranded tangle {p_1,p_2,p_3,p_4} X [0,1] in S^2 X [0,1] equipped\\nwith a strong marking, either an earring or a bypass. Viewing these marked\\ntangles as endomorphisms in the cobordism category from the four-punctured\\nsphere to itself, we identify the images of these endomorphisms in the\\nWeinstein symplectic partial category under the partially defined\\nholonomy-perturbed traceless character variety functor. We express these\\nendomorphisms on immersed curves in the pillowcase in terms of doubling and\\nfigure eight operations and prove they have the same image.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.11247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了 S^2 X [0,1] 中的三维四链纠缠 {p_1,p_2,p_3,p_4} 的全局性扰动无痕 SU(2) 特征多样性。S^2 X [0,1] 中的 X [0,1] 带有一个强标记,要么是耳环,要么是旁路。我们把这些标记的三角形看成是从四穿刺球到其本身的共线性范畴中的内同构,并在部分定义的holonomy-perturbed traceless character variety functor 下识别出这些内同构在韦恩斯坦交点偏范畴中的映像。我们用加倍运算和图八运算来表达枕套中浸没曲线上的这些内同构,并证明它们具有相同的图像。
An endomorphism on immersed curves in the pillowcase
We examine the holonomy-perturbed traceless SU(2) character variety of the
trivial four-stranded tangle {p_1,p_2,p_3,p_4} X [0,1] in S^2 X [0,1] equipped
with a strong marking, either an earring or a bypass. Viewing these marked
tangles as endomorphisms in the cobordism category from the four-punctured
sphere to itself, we identify the images of these endomorphisms in the
Weinstein symplectic partial category under the partially defined
holonomy-perturbed traceless character variety functor. We express these
endomorphisms on immersed curves in the pillowcase in terms of doubling and
figure eight operations and prove they have the same image.