弦几何理论与弦真空

Matsuo Sato
{"title":"弦几何理论与弦真空","authors":"Matsuo Sato","doi":"arxiv-2407.09049","DOIUrl":null,"url":null,"abstract":"String geometry theory is a candidate of the non-perturvative formulation of\nstring theory. In this theory, strings constitute not only particles but also\nthe space-time. In this review, we identify perturbative vacua, and derive the\npath-integrals of all order perturbative strings on the corresponding string\nbackgrounds by considering the fluctuations around the vacua. On the other\nhand, the most dominant part of the path-integral of string geometry theory is\nthe zeroth order part in the fluctuation of the action, which is obtained by\nsubstituting the perturbative vacua to the action. This part is identified with\nthe effective potential of the string backgrounds and obtained explicitly. The\nglobal minimum of the potential is the string vacuum. The urgent problem is to\nfind the global minimum. We introduce both analytical and numerical methods to\nsolve it.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"String Geometry Theory and The String Vacuum\",\"authors\":\"Matsuo Sato\",\"doi\":\"arxiv-2407.09049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"String geometry theory is a candidate of the non-perturvative formulation of\\nstring theory. In this theory, strings constitute not only particles but also\\nthe space-time. In this review, we identify perturbative vacua, and derive the\\npath-integrals of all order perturbative strings on the corresponding string\\nbackgrounds by considering the fluctuations around the vacua. On the other\\nhand, the most dominant part of the path-integral of string geometry theory is\\nthe zeroth order part in the fluctuation of the action, which is obtained by\\nsubstituting the perturbative vacua to the action. This part is identified with\\nthe effective potential of the string backgrounds and obtained explicitly. The\\nglobal minimum of the potential is the string vacuum. The urgent problem is to\\nfind the global minimum. We introduce both analytical and numerical methods to\\nsolve it.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.09049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

弦几何理论是弦理论的非钝化形式的候选理论。在这一理论中,弦不仅构成粒子,也构成时空。在这篇综述中,我们确定了微扰虚空,并通过考虑虚空周围的波动,推导出相应弦背景上所有阶微扰弦的路径积分。另一方面,弦几何理论路径积分中最主要的部分是作用波动中的第零阶部分,它是通过把微扰虚空代入作用而得到的。这一部分与弦背景的有效势相一致,并且是明确得到的。该势能的全局最小值就是弦真空。当务之急是找到全局最小值。我们引入了分析和数值方法来解决这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
String Geometry Theory and The String Vacuum
String geometry theory is a candidate of the non-perturvative formulation of string theory. In this theory, strings constitute not only particles but also the space-time. In this review, we identify perturbative vacua, and derive the path-integrals of all order perturbative strings on the corresponding string backgrounds by considering the fluctuations around the vacua. On the other hand, the most dominant part of the path-integral of string geometry theory is the zeroth order part in the fluctuation of the action, which is obtained by substituting the perturbative vacua to the action. This part is identified with the effective potential of the string backgrounds and obtained explicitly. The global minimum of the potential is the string vacuum. The urgent problem is to find the global minimum. We introduce both analytical and numerical methods to solve it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信