利用生成树生成具有自我批评功能的任意属性条件分子

Alexia Jolicoeur-Martineau, Aristide Baratin, Kisoo Kwon, Boris Knyazev, Yan Zhang
{"title":"利用生成树生成具有自我批评功能的任意属性条件分子","authors":"Alexia Jolicoeur-Martineau, Aristide Baratin, Kisoo Kwon, Boris Knyazev, Yan Zhang","doi":"arxiv-2407.09357","DOIUrl":null,"url":null,"abstract":"Generating novel molecules is challenging, with most representations leading\nto generative models producing many invalid molecules. Spanning Tree-based\nGraph Generation (STGG) is a promising approach to ensure the generation of\nvalid molecules, outperforming state-of-the-art SMILES and graph diffusion\nmodels for unconditional generation. In the real world, we want to be able to\ngenerate molecules conditional on one or multiple desired properties rather\nthan unconditionally. Thus, in this work, we extend STGG to\nmulti-property-conditional generation. Our approach, STGG+, incorporates a\nmodern Transformer architecture, random masking of properties during training\n(enabling conditioning on any subset of properties and classifier-free\nguidance), an auxiliary property-prediction loss (allowing the model to\nself-criticize molecules and select the best ones), and other improvements. We\nshow that STGG+ achieves state-of-the-art performance on in-distribution and\nout-of-distribution conditional generation, and reward maximization.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Any-Property-Conditional Molecule Generation with Self-Criticism using Spanning Trees\",\"authors\":\"Alexia Jolicoeur-Martineau, Aristide Baratin, Kisoo Kwon, Boris Knyazev, Yan Zhang\",\"doi\":\"arxiv-2407.09357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generating novel molecules is challenging, with most representations leading\\nto generative models producing many invalid molecules. Spanning Tree-based\\nGraph Generation (STGG) is a promising approach to ensure the generation of\\nvalid molecules, outperforming state-of-the-art SMILES and graph diffusion\\nmodels for unconditional generation. In the real world, we want to be able to\\ngenerate molecules conditional on one or multiple desired properties rather\\nthan unconditionally. Thus, in this work, we extend STGG to\\nmulti-property-conditional generation. Our approach, STGG+, incorporates a\\nmodern Transformer architecture, random masking of properties during training\\n(enabling conditioning on any subset of properties and classifier-free\\nguidance), an auxiliary property-prediction loss (allowing the model to\\nself-criticize molecules and select the best ones), and other improvements. We\\nshow that STGG+ achieves state-of-the-art performance on in-distribution and\\nout-of-distribution conditional generation, and reward maximization.\",\"PeriodicalId\":501022,\"journal\":{\"name\":\"arXiv - QuanBio - Biomolecules\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.09357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成新分子具有挑战性,大多数表示法会导致生成模型产生许多无效分子。基于生成树的图(Spanning Tree-basedGraph Generation,STGG)是确保生成有效分子的一种很有前途的方法,它在无条件生成方面优于最先进的 SMILES 和图扩散模型。在现实世界中,我们希望能够根据一个或多个所需的属性而不是无条件地生成分子。因此,在这项工作中,我们将 STGG 扩展到多属性条件生成。我们的方法 STGG+ 采用了现代的 Transformer 架构、在训练过程中随机屏蔽属性(实现了对任意属性子集的条件化和分类器免引导)、辅助属性预测损失(允许模型对分子进行自我批评并选择最佳分子)以及其他改进。结果表明,STGG+ 在分布内和分布外条件生成以及奖励最大化方面都达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Any-Property-Conditional Molecule Generation with Self-Criticism using Spanning Trees
Generating novel molecules is challenging, with most representations leading to generative models producing many invalid molecules. Spanning Tree-based Graph Generation (STGG) is a promising approach to ensure the generation of valid molecules, outperforming state-of-the-art SMILES and graph diffusion models for unconditional generation. In the real world, we want to be able to generate molecules conditional on one or multiple desired properties rather than unconditionally. Thus, in this work, we extend STGG to multi-property-conditional generation. Our approach, STGG+, incorporates a modern Transformer architecture, random masking of properties during training (enabling conditioning on any subset of properties and classifier-free guidance), an auxiliary property-prediction loss (allowing the model to self-criticize molecules and select the best ones), and other improvements. We show that STGG+ achieves state-of-the-art performance on in-distribution and out-of-distribution conditional generation, and reward maximization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信