{"title":"具有倾斜纹理的板翅式热交换器中 R21 的下流冷凝过程中的热传递","authors":"V. V. Kuznetsov, A. S. Shamirzaev","doi":"10.1134/S1810232824020048","DOIUrl":null,"url":null,"abstract":"<p>The paper presents an experimental study of the heat transfer during condensation of modeling freon R21 in downward flow conditions in an element of a plate-fin heat exchanger with inclined-texture perforated fins. The experiments were carried out for mass velocity of 20 to 50 kg/m<sup>2</sup>s and wall subcooling of 0.8 to 1.1 K with a heat exchanger with fin density of 850 fins per meter. The texture on the surface of the perforated fins of the heat exchanger was at angle of 45 degrees to the flow direction and made it possible to significantly enhance the heat transfer in comparison with plain fins. It has been found that the heat transfer coefficient depends on the vapor quality, and at a mass velocity of 20 kg/m<sup>2</sup>s, it exceeds the corresponding value at a velocity of 50 kg/m<sup>2</sup>s because of a thinner condensate film at the top of the texture.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 2","pages":"283 - 288"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat Transfer during Downflow Condensation of R21 in Plate-Fin Heat Exchanger with Inclined Texture\",\"authors\":\"V. V. Kuznetsov, A. S. Shamirzaev\",\"doi\":\"10.1134/S1810232824020048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents an experimental study of the heat transfer during condensation of modeling freon R21 in downward flow conditions in an element of a plate-fin heat exchanger with inclined-texture perforated fins. The experiments were carried out for mass velocity of 20 to 50 kg/m<sup>2</sup>s and wall subcooling of 0.8 to 1.1 K with a heat exchanger with fin density of 850 fins per meter. The texture on the surface of the perforated fins of the heat exchanger was at angle of 45 degrees to the flow direction and made it possible to significantly enhance the heat transfer in comparison with plain fins. It has been found that the heat transfer coefficient depends on the vapor quality, and at a mass velocity of 20 kg/m<sup>2</sup>s, it exceeds the corresponding value at a velocity of 50 kg/m<sup>2</sup>s because of a thinner condensate film at the top of the texture.</p>\",\"PeriodicalId\":627,\"journal\":{\"name\":\"Journal of Engineering Thermophysics\",\"volume\":\"33 2\",\"pages\":\"283 - 288\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1810232824020048\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824020048","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Heat Transfer during Downflow Condensation of R21 in Plate-Fin Heat Exchanger with Inclined Texture
The paper presents an experimental study of the heat transfer during condensation of modeling freon R21 in downward flow conditions in an element of a plate-fin heat exchanger with inclined-texture perforated fins. The experiments were carried out for mass velocity of 20 to 50 kg/m2s and wall subcooling of 0.8 to 1.1 K with a heat exchanger with fin density of 850 fins per meter. The texture on the surface of the perforated fins of the heat exchanger was at angle of 45 degrees to the flow direction and made it possible to significantly enhance the heat transfer in comparison with plain fins. It has been found that the heat transfer coefficient depends on the vapor quality, and at a mass velocity of 20 kg/m2s, it exceeds the corresponding value at a velocity of 50 kg/m2s because of a thinner condensate film at the top of the texture.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.