瓦法-维滕理论:不变式、弗洛尔同调、希格斯束、几何朗兰兹对应和分类

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Zhi-Cong Ong, Meng-Chwan Tan
{"title":"瓦法-维滕理论:不变式、弗洛尔同调、希格斯束、几何朗兰兹对应和分类","authors":"Zhi-Cong Ong, Meng-Chwan Tan","doi":"10.4310/atmp.2023.v27.n6.a3","DOIUrl":null,"url":null,"abstract":"We revisit Vafa–Witten theory in the more general setting whereby the underlying moduli space is not that of instantons, but of the full Vafa–Witten equations. We physically derive (i) a novel Vafa–Witten four-manifold invariant associated with this moduli space, (ii) their relation to Gromov–Witten invariants, (iii) a novel Vafa–Witten Floer homology assigned to three-manifold boundaries, (iv) a novel Vafa–Witten Atiyah–Floer correspondence, (v) a proof and generalization of a conjecture by Abouzaid–Manolescu in $\\href{https://doi.org/10.4171/jems/994}{[2]}$ about the hypercohomology of a perverse sheaf of vanishing cycles, (vi) a Langlands duality of these invariants, Floer homologies and hypercohomology, and (vii) a quantum geometric Langlands correspondence with purely imaginary parameter that specializes to the classical correspondence in the zero-coupling limit, where Higgs bundles feature in (ii), (iv), (vi) and (vii). We also explain how these invariants and homologies will be categorified in the process, and discuss their higher categorification. We thereby relate differential and enumerative geometry, topology and geometric representation theory in mathematics, via a maximally-supersymmetric topological quantum field theory with electric-magnetic duality in physics.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vafa-Witten theory: invariants, Floer homologies, Higgs bundles, a geometric Langlands correspondence, and categorification\",\"authors\":\"Zhi-Cong Ong, Meng-Chwan Tan\",\"doi\":\"10.4310/atmp.2023.v27.n6.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit Vafa–Witten theory in the more general setting whereby the underlying moduli space is not that of instantons, but of the full Vafa–Witten equations. We physically derive (i) a novel Vafa–Witten four-manifold invariant associated with this moduli space, (ii) their relation to Gromov–Witten invariants, (iii) a novel Vafa–Witten Floer homology assigned to three-manifold boundaries, (iv) a novel Vafa–Witten Atiyah–Floer correspondence, (v) a proof and generalization of a conjecture by Abouzaid–Manolescu in $\\\\href{https://doi.org/10.4171/jems/994}{[2]}$ about the hypercohomology of a perverse sheaf of vanishing cycles, (vi) a Langlands duality of these invariants, Floer homologies and hypercohomology, and (vii) a quantum geometric Langlands correspondence with purely imaginary parameter that specializes to the classical correspondence in the zero-coupling limit, where Higgs bundles feature in (ii), (iv), (vi) and (vii). We also explain how these invariants and homologies will be categorified in the process, and discuss their higher categorification. We thereby relate differential and enumerative geometry, topology and geometric representation theory in mathematics, via a maximally-supersymmetric topological quantum field theory with electric-magnetic duality in physics.\",\"PeriodicalId\":50848,\"journal\":{\"name\":\"Advances in Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4310/atmp.2023.v27.n6.a3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/atmp.2023.v27.n6.a3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们在更一般的环境中重新审视瓦法-维滕理论,其基础模空间不是瞬子模空间,而是完整的瓦法-维滕方程。我们从物理上推导出:(i) 与该模量空间相关的新颖的瓦法-维天四芒星不变式;(ii) 它们与格罗莫夫-维天不变式的关系;(iii) 分配给三芒星边界的新颖的瓦法-维天弗洛尔同调;(iv) 新颖的瓦法-维天阿蒂亚-弗洛尔对应关系;(v) 阿布扎伊德-马诺列斯库在 $\href{https://doi.org/10.4171/jems/994}{[2]}$中关于消失循环的反向剪子的超同调的证明和推广;(vi) 这些不变式、弗洛尔同调和超同调的朗兰兹对偶性;(vii) 具有纯虚参数的量子几何朗兰兹对应关系,该对应关系在零耦合极限中专门化为经典对应关系,其中希格斯束在(ii)、(iv)、(vi)和(vii)中具有特征。我们还解释了在此过程中如何对这些不变式和同调进行分类,并讨论了它们的更高分类。由此,我们将数学中的微分几何与枚举几何、拓扑学与几何表示论,通过物理学中的最大超对称拓扑量子场论与电磁二重性联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vafa-Witten theory: invariants, Floer homologies, Higgs bundles, a geometric Langlands correspondence, and categorification
We revisit Vafa–Witten theory in the more general setting whereby the underlying moduli space is not that of instantons, but of the full Vafa–Witten equations. We physically derive (i) a novel Vafa–Witten four-manifold invariant associated with this moduli space, (ii) their relation to Gromov–Witten invariants, (iii) a novel Vafa–Witten Floer homology assigned to three-manifold boundaries, (iv) a novel Vafa–Witten Atiyah–Floer correspondence, (v) a proof and generalization of a conjecture by Abouzaid–Manolescu in $\href{https://doi.org/10.4171/jems/994}{[2]}$ about the hypercohomology of a perverse sheaf of vanishing cycles, (vi) a Langlands duality of these invariants, Floer homologies and hypercohomology, and (vii) a quantum geometric Langlands correspondence with purely imaginary parameter that specializes to the classical correspondence in the zero-coupling limit, where Higgs bundles feature in (ii), (iv), (vi) and (vii). We also explain how these invariants and homologies will be categorified in the process, and discuss their higher categorification. We thereby relate differential and enumerative geometry, topology and geometric representation theory in mathematics, via a maximally-supersymmetric topological quantum field theory with electric-magnetic duality in physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Theoretical and Mathematical Physics
Advances in Theoretical and Mathematical Physics 物理-物理:粒子与场物理
CiteScore
2.20
自引率
6.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信