具有概率或几乎确定形式随机状态约束的控制问题中的最优性条件

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Caroline Geiersbach, René Henrion
{"title":"具有概率或几乎确定形式随机状态约束的控制问题中的最优性条件","authors":"Caroline Geiersbach, René Henrion","doi":"10.1287/moor.2023.0177","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss optimality conditions for optimization problems involving random state constraints, which are modeled in probabilistic or almost sure form. Although the latter can be understood as the limiting case of the former, the derivation of optimality conditions requires substantially different approaches. We apply them to a linear elliptic partial differential equation with random inputs. In the probabilistic case, we rely on the spherical-radial decomposition of Gaussian random vectors in order to formulate fully explicit optimality conditions involving a spherical integral. In the almost sure case, we derive optimality conditions and compare them with a model based on robust constraints with respect to the (compact) support of the given distribution.Funding: The authors thank the Deutsche Forschungsgemeinschaft [Projects B02 and B04 in the “Sonderforschungsbereich/Transregio 154 Mathematical Modelling, Simulation and Optimization Using the Example of Gas Networks”] for support. C. Geiersbach acknowledges support from the Deutsche Forschungsgemeinschaft [Germany’s Excellence Strategy–the Berlin Mathematics Research Center MATH+ Grant EXC-2046/1, Project 390685689]. R. Henrion acknowledges support from the Fondation Mathématique Jacques Hadamard [Program Gaspard Monge in Optimization and Operations Research, including support to this program by Electricité de France].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimality Conditions in Control Problems with Random State Constraints in Probabilistic or Almost Sure Form\",\"authors\":\"Caroline Geiersbach, René Henrion\",\"doi\":\"10.1287/moor.2023.0177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss optimality conditions for optimization problems involving random state constraints, which are modeled in probabilistic or almost sure form. Although the latter can be understood as the limiting case of the former, the derivation of optimality conditions requires substantially different approaches. We apply them to a linear elliptic partial differential equation with random inputs. In the probabilistic case, we rely on the spherical-radial decomposition of Gaussian random vectors in order to formulate fully explicit optimality conditions involving a spherical integral. In the almost sure case, we derive optimality conditions and compare them with a model based on robust constraints with respect to the (compact) support of the given distribution.Funding: The authors thank the Deutsche Forschungsgemeinschaft [Projects B02 and B04 in the “Sonderforschungsbereich/Transregio 154 Mathematical Modelling, Simulation and Optimization Using the Example of Gas Networks”] for support. C. Geiersbach acknowledges support from the Deutsche Forschungsgemeinschaft [Germany’s Excellence Strategy–the Berlin Mathematics Research Center MATH+ Grant EXC-2046/1, Project 390685689]. R. Henrion acknowledges support from the Fondation Mathématique Jacques Hadamard [Program Gaspard Monge in Optimization and Operations Research, including support to this program by Electricité de France].\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2023.0177\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0177","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了涉及随机状态约束的优化问题的最优性条件,这些约束是以概率或几乎确定的形式建模的。虽然后者可以理解为前者的极限情况,但最优化条件的推导需要本质上不同的方法。我们将它们应用于具有随机输入的线性椭圆偏微分方程。在概率情况下,我们依靠高斯随机向量的球面-径向分解来制定涉及球面积分的完全明确的最优性条件。在几乎确定的情况下,我们推导出最优条件,并与基于给定分布(紧凑)支持的稳健约束的模型进行比较:作者感谢德国联邦科学基金会 ["Sonderforschungsbereich/Transregio "项目中的 B02 和 B04 [以天然气网络为例的 154 数学建模、仿真和优化]] 的支持。C. Geiersbach 感谢德国科学基金会[德国卓越战略-柏林数学研究中心 MATH+ 资助 EXC-2046/1,项目 390685689]的支持。R. Henrion 感谢 Fondation Mathématique Jacques Hadamard [优化与运筹学 Gaspard Monge 计划,包括法国电力公司对该计划的支持]的资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimality Conditions in Control Problems with Random State Constraints in Probabilistic or Almost Sure Form
In this paper, we discuss optimality conditions for optimization problems involving random state constraints, which are modeled in probabilistic or almost sure form. Although the latter can be understood as the limiting case of the former, the derivation of optimality conditions requires substantially different approaches. We apply them to a linear elliptic partial differential equation with random inputs. In the probabilistic case, we rely on the spherical-radial decomposition of Gaussian random vectors in order to formulate fully explicit optimality conditions involving a spherical integral. In the almost sure case, we derive optimality conditions and compare them with a model based on robust constraints with respect to the (compact) support of the given distribution.Funding: The authors thank the Deutsche Forschungsgemeinschaft [Projects B02 and B04 in the “Sonderforschungsbereich/Transregio 154 Mathematical Modelling, Simulation and Optimization Using the Example of Gas Networks”] for support. C. Geiersbach acknowledges support from the Deutsche Forschungsgemeinschaft [Germany’s Excellence Strategy–the Berlin Mathematics Research Center MATH+ Grant EXC-2046/1, Project 390685689]. R. Henrion acknowledges support from the Fondation Mathématique Jacques Hadamard [Program Gaspard Monge in Optimization and Operations Research, including support to this program by Electricité de France].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信