{"title":"评估解释哈勃张力的西格玛暗能量模型","authors":"Sergio Torres-Arzayus, Camilo Delgado-Correal, Mario-Armando Higuera-G, Sebastián Rueda-Blanco","doi":"10.1002/asna.20240034","DOIUrl":null,"url":null,"abstract":"<p>In this study, we analyze Type Ia supernovae (SNe Ia) data sourced from the Pantheon+ compilation to investigate late-time physics effects influencing the expansion history, <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mrow>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ H(z) $$</annotation>\n </semantics></math>, at redshifts <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>z</mi>\n <mo><</mo>\n <mn>2</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ \\left(z<2\\right) $$</annotation>\n </semantics></math>. Our focus centers on a time-varying dark energy (DE) model that introduces a rapid transition in the equation of state, at a specific redshift, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mi>a</mi>\n </msub>\n </mrow>\n <annotation>$$ {z}_a $$</annotation>\n </semantics></math>, from the baseline, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>w</mi>\n <mi>Λ</mi>\n </msub>\n <mo>=</mo>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$$ {w}_{\\Lambda}=-1 $$</annotation>\n </semantics></math>, value to the present value, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>w</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation>$$ {w}_0 $$</annotation>\n </semantics></math>. The change in the equation of state is implemented as a transition in the DE density scale factor driven by a sigmoid function. The constraints obtained for the DE sigmoid phenomenological parametrization have broad applicability for dynamic DE models that invoke late-time physics. Our analysis indicates that the sigmoid model provides a slightly better, though not statistically significant, fit to the SNe Pantheon+ data compared to the standard <span></span><math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n </mrow>\n <annotation>$$ \\Lambda $$</annotation>\n </semantics></math> cold dark matter (<span></span><math>\n <semantics>\n <mrow>\n <mi>ΛCDM</mi>\n </mrow>\n <annotation>$$ \\Lambda \\mathrm{CDM} $$</annotation>\n </semantics></math>) model. The fit results, assuming a flat geometry and maintaining <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Ω</mi>\n <mi>m</mi>\n </msub>\n </mrow>\n <annotation>$$ {\\Omega}_m $$</annotation>\n </semantics></math> constant at the <i>2018-Planck</i> value of <span></span><math>\n <semantics>\n <mrow>\n <mn>0.3153</mn>\n </mrow>\n <annotation>$$ 0.3153 $$</annotation>\n </semantics></math>, are as follows: <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mn>0</mn>\n </msub>\n <msubsup>\n <mrow>\n <mo>=</mo>\n <mn>73.3</mn>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>0.6</mn>\n </mrow>\n <mrow>\n <mo>+</mo>\n <mn>0.2</mn>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ {H}_0={73.3}_{-0.6}^{+0.2} $$</annotation>\n </semantics></math> km s<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mo> </mo>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{-1} $$</annotation>\n </semantics></math> Mpc<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mo> </mo>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{-1} $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>w</mi>\n <mn>0</mn>\n </msub>\n <mo>=</mo>\n <mo>−</mo>\n <msubsup>\n <mn>0.95</mn>\n <mrow>\n <mo>−</mo>\n <mn>0.02</mn>\n </mrow>\n <mrow>\n <mo>+</mo>\n <mn>0.15</mn>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$$ {w}_0=-{0.95}_{-0.02}^{+0.15} $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mi>a</mi>\n </msub>\n <mo>=</mo>\n <mn>0.8</mn>\n <mo>±</mo>\n <mn>0.46</mn>\n </mrow>\n <annotation>$$ {z}_a=0.8\\pm 0.46 $$</annotation>\n </semantics></math>. The errors represent statistical uncertainties only. The available SN dataset lacks sufficient statistical power to distinguish between the baseline <span></span><math>\n <semantics>\n <mrow>\n <mi>ΛCDM</mi>\n </mrow>\n <annotation>$$ \\Lambda \\mathrm{CDM} $$</annotation>\n </semantics></math> model and the alternative sigmoid models. A feature of interest offered by the sigmoid model is that it identifies a specific redshift, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mi>a</mi>\n </msub>\n <mo>=</mo>\n <mn>0.8</mn>\n </mrow>\n <annotation>$$ {z}_a=0.8 $$</annotation>\n </semantics></math>, where a potential transition in the equation of state could have occurred. The sigmoid model does not favor a DE in the phantom region (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>w</mi>\n <mn>0</mn>\n </msub>\n <mo><</mo>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$$ {w}_0<-1 $$</annotation>\n </semantics></math>). Further constraints to the dynamic DE model have been obtained using CMB data to compute the distance to the last scattering surface. While the sigmoid DE model does not completely resolve the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation>$$ {H}_0 $$</annotation>\n </semantics></math> tension, it offers a transition mechanism that can still play a role alongside other potential solutions.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 6-7","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating a sigmoid dark energy model to explain the Hubble tension\",\"authors\":\"Sergio Torres-Arzayus, Camilo Delgado-Correal, Mario-Armando Higuera-G, Sebastián Rueda-Blanco\",\"doi\":\"10.1002/asna.20240034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we analyze Type Ia supernovae (SNe Ia) data sourced from the Pantheon+ compilation to investigate late-time physics effects influencing the expansion history, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>z</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$$ H(z) $$</annotation>\\n </semantics></math>, at redshifts <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>z</mi>\\n <mo><</mo>\\n <mn>2</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$$ \\\\left(z<2\\\\right) $$</annotation>\\n </semantics></math>. Our focus centers on a time-varying dark energy (DE) model that introduces a rapid transition in the equation of state, at a specific redshift, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>z</mi>\\n <mi>a</mi>\\n </msub>\\n </mrow>\\n <annotation>$$ {z}_a $$</annotation>\\n </semantics></math>, from the baseline, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>w</mi>\\n <mi>Λ</mi>\\n </msub>\\n <mo>=</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$$ {w}_{\\\\Lambda}=-1 $$</annotation>\\n </semantics></math>, value to the present value, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>w</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation>$$ {w}_0 $$</annotation>\\n </semantics></math>. The change in the equation of state is implemented as a transition in the DE density scale factor driven by a sigmoid function. The constraints obtained for the DE sigmoid phenomenological parametrization have broad applicability for dynamic DE models that invoke late-time physics. Our analysis indicates that the sigmoid model provides a slightly better, though not statistically significant, fit to the SNe Pantheon+ data compared to the standard <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Λ</mi>\\n </mrow>\\n <annotation>$$ \\\\Lambda $$</annotation>\\n </semantics></math> cold dark matter (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ΛCDM</mi>\\n </mrow>\\n <annotation>$$ \\\\Lambda \\\\mathrm{CDM} $$</annotation>\\n </semantics></math>) model. The fit results, assuming a flat geometry and maintaining <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Ω</mi>\\n <mi>m</mi>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\Omega}_m $$</annotation>\\n </semantics></math> constant at the <i>2018-Planck</i> value of <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0.3153</mn>\\n </mrow>\\n <annotation>$$ 0.3153 $$</annotation>\\n </semantics></math>, are as follows: <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mn>0</mn>\\n </msub>\\n <msubsup>\\n <mrow>\\n <mo>=</mo>\\n <mn>73.3</mn>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>0.6</mn>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n <mn>0.2</mn>\\n </mrow>\\n </msubsup>\\n </mrow>\\n <annotation>$$ {H}_0={73.3}_{-0.6}^{+0.2} $$</annotation>\\n </semantics></math> km s<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mo> </mo>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {}^{-1} $$</annotation>\\n </semantics></math> Mpc<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mo> </mo>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {}^{-1} $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>w</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>=</mo>\\n <mo>−</mo>\\n <msubsup>\\n <mn>0.95</mn>\\n <mrow>\\n <mo>−</mo>\\n <mn>0.02</mn>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n <mn>0.15</mn>\\n </mrow>\\n </msubsup>\\n </mrow>\\n <annotation>$$ {w}_0=-{0.95}_{-0.02}^{+0.15} $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>z</mi>\\n <mi>a</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>0.8</mn>\\n <mo>±</mo>\\n <mn>0.46</mn>\\n </mrow>\\n <annotation>$$ {z}_a=0.8\\\\pm 0.46 $$</annotation>\\n </semantics></math>. The errors represent statistical uncertainties only. The available SN dataset lacks sufficient statistical power to distinguish between the baseline <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ΛCDM</mi>\\n </mrow>\\n <annotation>$$ \\\\Lambda \\\\mathrm{CDM} $$</annotation>\\n </semantics></math> model and the alternative sigmoid models. A feature of interest offered by the sigmoid model is that it identifies a specific redshift, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>z</mi>\\n <mi>a</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>0.8</mn>\\n </mrow>\\n <annotation>$$ {z}_a=0.8 $$</annotation>\\n </semantics></math>, where a potential transition in the equation of state could have occurred. The sigmoid model does not favor a DE in the phantom region (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>w</mi>\\n <mn>0</mn>\\n </msub>\\n <mo><</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$$ {w}_0<-1 $$</annotation>\\n </semantics></math>). Further constraints to the dynamic DE model have been obtained using CMB data to compute the distance to the last scattering surface. While the sigmoid DE model does not completely resolve the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation>$$ {H}_0 $$</annotation>\\n </semantics></math> tension, it offers a transition mechanism that can still play a role alongside other potential solutions.</p>\",\"PeriodicalId\":55442,\"journal\":{\"name\":\"Astronomische Nachrichten\",\"volume\":\"345 6-7\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomische Nachrichten\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240034\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240034","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
在这项研究中,我们分析了来自 Pantheon+ 汇编的 Ia 型超新星(SNe Ia)数据,以研究影响红移下膨胀历史(Ⅳ)的晚期物理效应。我们的研究重点是一个时变暗能量(DE)模型,该模型引入了状态方程的快速转变,在特定红移下,从基线值Ⅳ到当前值Ⅴ。状态方程的变化是由一个半径函数驱动的暗能量密度尺度因子的转变来实现的。为 DE sigmoid 现象参数化获得的约束条件,对于引用晚期物理的动态 DE 模型具有广泛的适用性。我们的分析表明,与标准冷暗物质()模型相比,sigmoid 模型对 SNe Pantheon+ 数据的拟合效果稍好,尽管在统计上并不显著。假定几何形状平坦,并保持 2018-Planck 值不变的Ⅳ的拟合结果如下:km s Mpc,Ⅳ。误差仅代表统计不确定性。现有的 SN 数据集缺乏足够的统计能力来区分基线模型和替代的 sigmoid 模型。西格码模型的一个重要特点是,它能确定一个特定的红移,即状态方程可能发生转变的位置。在幻影区()内,该曲线模型并不支持 DE。利用 CMB 数据计算最后一个散射面的距离,得到了对动态 DE 模型的进一步约束。虽然曲线DE模型并不能完全解决张力问题,但它提供了一种过渡机制,仍然可以与其他潜在的解决方案一起发挥作用。
Evaluating a sigmoid dark energy model to explain the Hubble tension
In this study, we analyze Type Ia supernovae (SNe Ia) data sourced from the Pantheon+ compilation to investigate late-time physics effects influencing the expansion history, , at redshifts . Our focus centers on a time-varying dark energy (DE) model that introduces a rapid transition in the equation of state, at a specific redshift, , from the baseline, , value to the present value, . The change in the equation of state is implemented as a transition in the DE density scale factor driven by a sigmoid function. The constraints obtained for the DE sigmoid phenomenological parametrization have broad applicability for dynamic DE models that invoke late-time physics. Our analysis indicates that the sigmoid model provides a slightly better, though not statistically significant, fit to the SNe Pantheon+ data compared to the standard cold dark matter () model. The fit results, assuming a flat geometry and maintaining constant at the 2018-Planck value of , are as follows: km s Mpc, , . The errors represent statistical uncertainties only. The available SN dataset lacks sufficient statistical power to distinguish between the baseline model and the alternative sigmoid models. A feature of interest offered by the sigmoid model is that it identifies a specific redshift, , where a potential transition in the equation of state could have occurred. The sigmoid model does not favor a DE in the phantom region (). Further constraints to the dynamic DE model have been obtained using CMB data to compute the distance to the last scattering surface. While the sigmoid DE model does not completely resolve the tension, it offers a transition mechanism that can still play a role alongside other potential solutions.
期刊介绍:
Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.