利用 Nii-C 实现自动并行回火马尔可夫链蒙特卡洛

Sheng Jin, Wenxin Jiang, Dong-Hong Wu
{"title":"利用 Nii-C 实现自动并行回火马尔可夫链蒙特卡洛","authors":"Sheng Jin, Wenxin Jiang, Dong-Hong Wu","doi":"arxiv-2407.09915","DOIUrl":null,"url":null,"abstract":"Due to the high dimensionality or multimodality that is common in modern\nastronomy, sampling Bayesian posteriors can be challenging. Several publicly\navailable codes based on different sampling algorithms can solve these complex\nmodels, but the execution of the code is not always efficient or fast enough.\nThe article introduces a C language general-purpose code, Nii-C\n(https://github.com/shengjin/nii-c.git), that implements a framework of\nAutomatic Parallel Tempering Markov Chain Monte Carlo. Automatic in this\ncontext means that the parameters that ensure an efficient parallel tempering\nprocess can be set by a control system during the initial stages of a sampling\nprocess. The auto-tuned parameters consist of two parts, the temperature\nladders of all parallel tempering Markov chains and the proposal distributions\nfor all model parameters across all parallel tempering chains. In order to\nreduce dependencies in the compilation process and increase the code's\nexecution speed, Nii-C code is constructed entirely in the C language and\nparallelised using the Message-Passing Interface protocol to optimise the\nefficiency of parallel sampling. These implementations facilitate rapid\nconvergence in the sampling of high-dimensional and multi-modal distributions,\nas well as expeditious code execution time. The Nii-C code can be used in\nvarious research areas to trace complex distributions due to its high sampling\nefficiency and quick execution speed. This article presents a few applications\nof the Nii-C code.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Parallel Tempering Markov Chain Monte Carlo with Nii-C\",\"authors\":\"Sheng Jin, Wenxin Jiang, Dong-Hong Wu\",\"doi\":\"arxiv-2407.09915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the high dimensionality or multimodality that is common in modern\\nastronomy, sampling Bayesian posteriors can be challenging. Several publicly\\navailable codes based on different sampling algorithms can solve these complex\\nmodels, but the execution of the code is not always efficient or fast enough.\\nThe article introduces a C language general-purpose code, Nii-C\\n(https://github.com/shengjin/nii-c.git), that implements a framework of\\nAutomatic Parallel Tempering Markov Chain Monte Carlo. Automatic in this\\ncontext means that the parameters that ensure an efficient parallel tempering\\nprocess can be set by a control system during the initial stages of a sampling\\nprocess. The auto-tuned parameters consist of two parts, the temperature\\nladders of all parallel tempering Markov chains and the proposal distributions\\nfor all model parameters across all parallel tempering chains. In order to\\nreduce dependencies in the compilation process and increase the code's\\nexecution speed, Nii-C code is constructed entirely in the C language and\\nparallelised using the Message-Passing Interface protocol to optimise the\\nefficiency of parallel sampling. These implementations facilitate rapid\\nconvergence in the sampling of high-dimensional and multi-modal distributions,\\nas well as expeditious code execution time. The Nii-C code can be used in\\nvarious research areas to trace complex distributions due to its high sampling\\nefficiency and quick execution speed. This article presents a few applications\\nof the Nii-C code.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.09915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于现代天文学中常见的高维度或多模态性,贝叶斯后验的采样可能具有挑战性。一些基于不同采样算法的公开代码可以求解这些复杂模型,但代码执行的效率和速度并不总是足够快。本文介绍了一种 C 语言通用代码 Nii-C(https://github.com/shengjin/nii-c.git),它实现了一种自动并行调节马尔可夫链蒙特卡罗框架。这里所说的自动是指在采样过程的初始阶段,可以通过控制系统设置确保高效并行回火过程的参数。自动调整参数由两部分组成,即所有平行回火马尔可夫链的温度梯度和所有平行回火链上所有模型参数的建议分布。为了减少编译过程中的依赖性并提高代码执行速度,Nii-C 代码完全用 C 语言编写,并使用消息传递接口协议进行并行化,以优化并行采样的效率。这些实现有助于在高维和多模态分布采样时快速收敛,并加快代码执行时间。Nii-C 代码的采样效率高、执行速度快,因此可用于多个研究领域,对复杂分布进行追踪。本文将介绍 Nii-C 代码的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Parallel Tempering Markov Chain Monte Carlo with Nii-C
Due to the high dimensionality or multimodality that is common in modern astronomy, sampling Bayesian posteriors can be challenging. Several publicly available codes based on different sampling algorithms can solve these complex models, but the execution of the code is not always efficient or fast enough. The article introduces a C language general-purpose code, Nii-C (https://github.com/shengjin/nii-c.git), that implements a framework of Automatic Parallel Tempering Markov Chain Monte Carlo. Automatic in this context means that the parameters that ensure an efficient parallel tempering process can be set by a control system during the initial stages of a sampling process. The auto-tuned parameters consist of two parts, the temperature ladders of all parallel tempering Markov chains and the proposal distributions for all model parameters across all parallel tempering chains. In order to reduce dependencies in the compilation process and increase the code's execution speed, Nii-C code is constructed entirely in the C language and parallelised using the Message-Passing Interface protocol to optimise the efficiency of parallel sampling. These implementations facilitate rapid convergence in the sampling of high-dimensional and multi-modal distributions, as well as expeditious code execution time. The Nii-C code can be used in various research areas to trace complex distributions due to its high sampling efficiency and quick execution speed. This article presents a few applications of the Nii-C code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信