数出 N$ 皇后

Nick Polson, Vadim Sokolov
{"title":"数出 N$ 皇后","authors":"Nick Polson, Vadim Sokolov","doi":"arxiv-2407.08830","DOIUrl":null,"url":null,"abstract":"Gauss proposed the problem of how to enumerate the number of solutions for\nplacing $N$ queens on an $N\\times N$ chess board, so no two queens attack each\nother. The N-queen problem is a classic problem in combinatorics. We describe a\nvariety of Monte Carlo (MC) methods for counting the number of solutions. In\nparticular, we propose a quantile re-ordering based on the Lorenz curve of a\nsum that is related to counting the number of solutions. We show his approach\nleads to an efficient polynomial-time solution. Other MC methods include\nvertical likelihood Monte Carlo, importance sampling, slice sampling, simulated\nannealing, energy-level sampling, and nested-sampling. Sampling binary matrices\nthat identify the locations of the queens on the board can be done with a\nSwendsen-Wang style algorithm. Our Monte Carlo approach counts the number of\nsolutions in polynomial time.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting $N$ Queens\",\"authors\":\"Nick Polson, Vadim Sokolov\",\"doi\":\"arxiv-2407.08830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gauss proposed the problem of how to enumerate the number of solutions for\\nplacing $N$ queens on an $N\\\\times N$ chess board, so no two queens attack each\\nother. The N-queen problem is a classic problem in combinatorics. We describe a\\nvariety of Monte Carlo (MC) methods for counting the number of solutions. In\\nparticular, we propose a quantile re-ordering based on the Lorenz curve of a\\nsum that is related to counting the number of solutions. We show his approach\\nleads to an efficient polynomial-time solution. Other MC methods include\\nvertical likelihood Monte Carlo, importance sampling, slice sampling, simulated\\nannealing, energy-level sampling, and nested-sampling. Sampling binary matrices\\nthat identify the locations of the queens on the board can be done with a\\nSwendsen-Wang style algorithm. Our Monte Carlo approach counts the number of\\nsolutions in polynomial time.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.08830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.08830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高斯提出了这样一个问题:如何枚举出在一个 N 次 N 元的棋盘上摆放 N 个皇后的解的个数,从而避免两个皇后互相攻击。N 皇后问题是组合数学中的一个经典问题。我们介绍了各种计算解数的蒙特卡罗(MC)方法。特别是,我们提出了一种基于洛伦兹曲线的量子重排序方法,它与计算解的数量有关。我们证明了他的方法能带来高效的多项式时间解决方案。其他 MC 方法包括理论似然蒙特卡罗、重要性采样、切片采样、模拟嵌套、能量级采样和嵌套采样。对确定棋盘上皇后位置的二进制矩阵进行采样,可采用斯文森-旺(Swendsen-Wang)式算法。我们的蒙特卡罗方法可以在多项式时间内计算出解决方案的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting $N$ Queens
Gauss proposed the problem of how to enumerate the number of solutions for placing $N$ queens on an $N\times N$ chess board, so no two queens attack each other. The N-queen problem is a classic problem in combinatorics. We describe a variety of Monte Carlo (MC) methods for counting the number of solutions. In particular, we propose a quantile re-ordering based on the Lorenz curve of a sum that is related to counting the number of solutions. We show his approach leads to an efficient polynomial-time solution. Other MC methods include vertical likelihood Monte Carlo, importance sampling, slice sampling, simulated annealing, energy-level sampling, and nested-sampling. Sampling binary matrices that identify the locations of the queens on the board can be done with a Swendsen-Wang style algorithm. Our Monte Carlo approach counts the number of solutions in polynomial time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信