一般非紧凑对称空间上的波方程

IF 1.7 1区 数学 Q1 MATHEMATICS
Jean-Philippe Anker, Hong-Wei Zhang
{"title":"一般非紧凑对称空间上的波方程","authors":"Jean-Philippe Anker, Hong-Wei Zhang","doi":"10.1353/ajm.2024.a932434","DOIUrl":null,"url":null,"abstract":"<p><p>abstract:</p><p>We establish sharp pointwise kernel estimates and dispersive properties for the wave equation on noncompact symmetric spaces of general rank. This is achieved by combining the stationary phase method and the Hadamard parametrix, and in particular, by introducing a subtle spectral decomposition, which allows us to overcome a well-known difficulty in higher rank analysis, namely the fact that the Plancherel density is not a differential symbol in general. Consequently, we deduce the Strichartz inequality for a large family of admissible pairs and prove global well-posedness results for the corresponding semi-linear equation with low regularity data as on hyperbolic spaces.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"66 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave equation on general noncompact symmetric spaces\",\"authors\":\"Jean-Philippe Anker, Hong-Wei Zhang\",\"doi\":\"10.1353/ajm.2024.a932434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>abstract:</p><p>We establish sharp pointwise kernel estimates and dispersive properties for the wave equation on noncompact symmetric spaces of general rank. This is achieved by combining the stationary phase method and the Hadamard parametrix, and in particular, by introducing a subtle spectral decomposition, which allows us to overcome a well-known difficulty in higher rank analysis, namely the fact that the Plancherel density is not a differential symbol in general. Consequently, we deduce the Strichartz inequality for a large family of admissible pairs and prove global well-posedness results for the corresponding semi-linear equation with low regularity data as on hyperbolic spaces.</p></p>\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2024.a932434\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2024.a932434","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要:我们为一般秩的非紧凑对称空间上的波方程建立了尖锐的点核估计和分散特性。这是通过结合静止相法和哈达玛参数矩阵,特别是通过引入一种微妙的谱分解来实现的,它使我们克服了高阶分析中的一个众所周知的困难,即 Plancherel 密度在一般情况下不是微分符号。因此,我们推导出了一大类可容许对的斯特里查茨不等式,并证明了相应的半线性方程的全局好求结果,其数据具有低正则性,就像双曲空间上的数据一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wave equation on general noncompact symmetric spaces

abstract:

We establish sharp pointwise kernel estimates and dispersive properties for the wave equation on noncompact symmetric spaces of general rank. This is achieved by combining the stationary phase method and the Hadamard parametrix, and in particular, by introducing a subtle spectral decomposition, which allows us to overcome a well-known difficulty in higher rank analysis, namely the fact that the Plancherel density is not a differential symbol in general. Consequently, we deduce the Strichartz inequality for a large family of admissible pairs and prove global well-posedness results for the corresponding semi-linear equation with low regularity data as on hyperbolic spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信