{"title":"关于单位元素的扭曲共轭类是子群的有限群","authors":"Chiara Nicotera","doi":"10.1007/s00013-024-02025-6","DOIUrl":null,"url":null,"abstract":"<div><p>We consider groups <i>G</i> such that the set <span>\\([G,\\varphi ]=\\{g^{-1}g^{\\varphi }|g\\in G\\}\\)</span> is a subgroup for every automorphism <span>\\(\\varphi \\)</span> of <i>G</i>, and we prove that there exists such a group <i>G</i> that is finite and nilpotent of class <i>n</i> for every <span>\\(n\\in \\mathbb N\\)</span>. Then there exists an infinite not nilpotent group with the above property and the Conjecture 18.14 of Khukhro and Mazurov (The Kourovka Notebook No. 20, 2022) is false.\n</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-02025-6.pdf","citationCount":"0","resultStr":"{\"title\":\"On finite groups in which the twisted conjugacy classes of the unit element are subgroups\",\"authors\":\"Chiara Nicotera\",\"doi\":\"10.1007/s00013-024-02025-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider groups <i>G</i> such that the set <span>\\\\([G,\\\\varphi ]=\\\\{g^{-1}g^{\\\\varphi }|g\\\\in G\\\\}\\\\)</span> is a subgroup for every automorphism <span>\\\\(\\\\varphi \\\\)</span> of <i>G</i>, and we prove that there exists such a group <i>G</i> that is finite and nilpotent of class <i>n</i> for every <span>\\\\(n\\\\in \\\\mathbb N\\\\)</span>. Then there exists an infinite not nilpotent group with the above property and the Conjecture 18.14 of Khukhro and Mazurov (The Kourovka Notebook No. 20, 2022) is false.\\n</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-024-02025-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02025-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02025-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On finite groups in which the twisted conjugacy classes of the unit element are subgroups
We consider groups G such that the set \([G,\varphi ]=\{g^{-1}g^{\varphi }|g\in G\}\) is a subgroup for every automorphism \(\varphi \) of G, and we prove that there exists such a group G that is finite and nilpotent of class n for every \(n\in \mathbb N\). Then there exists an infinite not nilpotent group with the above property and the Conjecture 18.14 of Khukhro and Mazurov (The Kourovka Notebook No. 20, 2022) is false.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.