将 Q 值与 TCF 连接,用于 MEMS 和压电谐振器

S. McHugh
{"title":"将 Q 值与 TCF 连接,用于 MEMS 和压电谐振器","authors":"S. McHugh","doi":"arxiv-2407.09455","DOIUrl":null,"url":null,"abstract":"Two critical characteristics for any MEMS resonator are the quality factor\n($Q$) and the temperature coefficient of frequency ($TCF$). The connection\nbetween $Q$ and $TCF$ is demonstrated here with a phenomenological anharmonic\noscillator model. Specifically, it is shown that the same nonlinear terms\nresponsible for the $TCF$ set an upper limit on the resonator's $Q$. A concise\nformula is found to estimate this loss and is shown to be closely related to\nWoodruff's formula for Akhiezer damping. The use of this formula is illustrated\nby extending the model to an important class of MEMS; piezoelectric resonators.\nFinally, the model is applied to published data for an AlN-on-diamond\npiezoelectric resonator. The focus here is on MEMS resonators, but the method\nshould apply broadly to any resonance with non-zero $TCF$.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connecting Q to TCF for MEMS and piezoelectric resonators\",\"authors\":\"S. McHugh\",\"doi\":\"arxiv-2407.09455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two critical characteristics for any MEMS resonator are the quality factor\\n($Q$) and the temperature coefficient of frequency ($TCF$). The connection\\nbetween $Q$ and $TCF$ is demonstrated here with a phenomenological anharmonic\\noscillator model. Specifically, it is shown that the same nonlinear terms\\nresponsible for the $TCF$ set an upper limit on the resonator's $Q$. A concise\\nformula is found to estimate this loss and is shown to be closely related to\\nWoodruff's formula for Akhiezer damping. The use of this formula is illustrated\\nby extending the model to an important class of MEMS; piezoelectric resonators.\\nFinally, the model is applied to published data for an AlN-on-diamond\\npiezoelectric resonator. The focus here is on MEMS resonators, but the method\\nshould apply broadly to any resonance with non-zero $TCF$.\",\"PeriodicalId\":501482,\"journal\":{\"name\":\"arXiv - PHYS - Classical Physics\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Classical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.09455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

任何 MEMS 谐振器都有两个关键特性,即品质因数(Q 值)和频率温度系数(TCF 值)。这里通过一个现象学非谐波振荡器模型证明了 Q 值和 TCF 值之间的联系。具体地说,它表明对 $TCF$ 负责的相同非线性项对谐振器的 $Q$ 设置了上限。我们找到了一个简洁的公式来估算这一损失,并证明它与伍德拉夫的阿基泽阻尼公式密切相关。最后,将该模型应用于已公布的 AlN-on-diamond 压电谐振器数据。这里的重点是 MEMS 谐振器,但该方法应广泛适用于任何具有非零 TCF$ 的谐振。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connecting Q to TCF for MEMS and piezoelectric resonators
Two critical characteristics for any MEMS resonator are the quality factor ($Q$) and the temperature coefficient of frequency ($TCF$). The connection between $Q$ and $TCF$ is demonstrated here with a phenomenological anharmonic oscillator model. Specifically, it is shown that the same nonlinear terms responsible for the $TCF$ set an upper limit on the resonator's $Q$. A concise formula is found to estimate this loss and is shown to be closely related to Woodruff's formula for Akhiezer damping. The use of this formula is illustrated by extending the model to an important class of MEMS; piezoelectric resonators. Finally, the model is applied to published data for an AlN-on-diamond piezoelectric resonator. The focus here is on MEMS resonators, but the method should apply broadly to any resonance with non-zero $TCF$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信