时间调制离散机械系统的非布洛赫带理论

Kei Matsushima, Takayuki Yamada
{"title":"时间调制离散机械系统的非布洛赫带理论","authors":"Kei Matsushima, Takayuki Yamada","doi":"arxiv-2407.09871","DOIUrl":null,"url":null,"abstract":"This study establishes a non-Bloch band theory for time-modulated discrete\nmechanical systems. We consider simple mass-spring chains whose stiffness is\nperiodically modulated in time. Using the temporal Floquet theory, the system\nis characterized by linear algebraic equations in terms of Fourier\ncoefficients. This allows us to employ a standard linear eigenvalue analysis.\nUnlike non-modulated linear systems, the time modulation makes the coefficient\nmatrix non-Hermitian, which gives rise to, for example, parametric resonance,\nnon-reciprocal wave transmission, and non-Hermitian skin effects. In\nparticular, we study finite-length chains consisting of spatially periodic\nmass-spring units and show that the standard Bloch band theory is not valid for\nestimating their eigenvalue distribution. To remedy this, we propose a\nnon-Bloch band theory based on a generalized Brillouin zone. The proposed\ntheory is verified by some numerical experiments.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Bloch band theory for time-modulated discrete mechanical systems\",\"authors\":\"Kei Matsushima, Takayuki Yamada\",\"doi\":\"arxiv-2407.09871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study establishes a non-Bloch band theory for time-modulated discrete\\nmechanical systems. We consider simple mass-spring chains whose stiffness is\\nperiodically modulated in time. Using the temporal Floquet theory, the system\\nis characterized by linear algebraic equations in terms of Fourier\\ncoefficients. This allows us to employ a standard linear eigenvalue analysis.\\nUnlike non-modulated linear systems, the time modulation makes the coefficient\\nmatrix non-Hermitian, which gives rise to, for example, parametric resonance,\\nnon-reciprocal wave transmission, and non-Hermitian skin effects. In\\nparticular, we study finite-length chains consisting of spatially periodic\\nmass-spring units and show that the standard Bloch band theory is not valid for\\nestimating their eigenvalue distribution. To remedy this, we propose a\\nnon-Bloch band theory based on a generalized Brillouin zone. The proposed\\ntheory is verified by some numerical experiments.\",\"PeriodicalId\":501482,\"journal\":{\"name\":\"arXiv - PHYS - Classical Physics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Classical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.09871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究为时间调制离散机械系统建立了非布洛赫带理论。我们考虑了刚度随时间周期性调制的简单质量弹簧链。利用时间 Floquet 理论,系统由傅里叶系数的线性代数方程来表征。与非调制线性系统不同的是,时间调制使得系数矩阵非ermitian,从而产生了参数共振、非互易波传输和非ermitian趋肤效应等问题。特别是,我们研究了由空间周期性物质弹簧单元组成的有限长度链,结果表明标准布洛赫带理论无法有效估计其特征值分布。为了弥补这一缺陷,我们提出了基于广义布里渊区的非布洛赫带理论。我们通过一些数值实验验证了所提出的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Bloch band theory for time-modulated discrete mechanical systems
This study establishes a non-Bloch band theory for time-modulated discrete mechanical systems. We consider simple mass-spring chains whose stiffness is periodically modulated in time. Using the temporal Floquet theory, the system is characterized by linear algebraic equations in terms of Fourier coefficients. This allows us to employ a standard linear eigenvalue analysis. Unlike non-modulated linear systems, the time modulation makes the coefficient matrix non-Hermitian, which gives rise to, for example, parametric resonance, non-reciprocal wave transmission, and non-Hermitian skin effects. In particular, we study finite-length chains consisting of spatially periodic mass-spring units and show that the standard Bloch band theory is not valid for estimating their eigenvalue distribution. To remedy this, we propose a non-Bloch band theory based on a generalized Brillouin zone. The proposed theory is verified by some numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信