沿着丝线传播曲率的异化作用

Ken Sekimoto
{"title":"沿着丝线传播曲率的异化作用","authors":"Ken Sekimoto","doi":"arxiv-2407.10826","DOIUrl":null,"url":null,"abstract":"Can a filament transmit the curvatures across the constituting modules and\ncontrol them at one of its end? Inspired by the observation of protofilament -\nconstituent biopolymer of microtubule - this question is addressed by a\nconstructive approach. In our model a simple allosteric element in each module\ncouples with the neighboring modules at its interfaces, which gives rise to a\nsingle degree of freedom to control the global shape of the filament. The model\ncan be analyzed in analogy with discrete-time dynamical systems having a\nbifurcation of trans-critical type.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Allosteric propagation of curvature along filament\",\"authors\":\"Ken Sekimoto\",\"doi\":\"arxiv-2407.10826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Can a filament transmit the curvatures across the constituting modules and\\ncontrol them at one of its end? Inspired by the observation of protofilament -\\nconstituent biopolymer of microtubule - this question is addressed by a\\nconstructive approach. In our model a simple allosteric element in each module\\ncouples with the neighboring modules at its interfaces, which gives rise to a\\nsingle degree of freedom to control the global shape of the filament. The model\\ncan be analyzed in analogy with discrete-time dynamical systems having a\\nbifurcation of trans-critical type.\",\"PeriodicalId\":501482,\"journal\":{\"name\":\"arXiv - PHYS - Classical Physics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Classical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.10826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长丝能否在构成模块之间传递曲率并在其一端控制曲率?受原丝(微管的组成生物聚合物)观察结果的启发,我们采用一种结构性方法来解决这个问题。在我们的模型中,每个模块中的一个简单异构元件在其界面上与相邻模块耦合,从而产生了控制原丝整体形状的单一自由度。该模型可以类比于具有跨临界类型分岔的离散时间动力系统进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Allosteric propagation of curvature along filament
Can a filament transmit the curvatures across the constituting modules and control them at one of its end? Inspired by the observation of protofilament - constituent biopolymer of microtubule - this question is addressed by a constructive approach. In our model a simple allosteric element in each module couples with the neighboring modules at its interfaces, which gives rise to a single degree of freedom to control the global shape of the filament. The model can be analyzed in analogy with discrete-time dynamical systems having a bifurcation of trans-critical type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信