用幂级数直接求和法求解自由对称体的欧拉-泊松方程的一般解法

Guilherme Corrêa Silva
{"title":"用幂级数直接求和法求解自由对称体的欧拉-泊松方程的一般解法","authors":"Guilherme Corrêa Silva","doi":"arxiv-2407.10326","DOIUrl":null,"url":null,"abstract":"Euler-Poisson equations belong to the class of first-order differential\nequations for determining the integral lines of a given vector field. The\ngeneral solution to these equations can be written as a power series of the\nevolution parameter. We calculated the sum of these series for the case of a\nfree symmetric body, obtaining its rotation matrix through the elementary\nfunctions.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General solution to Euler-Poisson equations of a free symmetric body by direct summation of power series\",\"authors\":\"Guilherme Corrêa Silva\",\"doi\":\"arxiv-2407.10326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Euler-Poisson equations belong to the class of first-order differential\\nequations for determining the integral lines of a given vector field. The\\ngeneral solution to these equations can be written as a power series of the\\nevolution parameter. We calculated the sum of these series for the case of a\\nfree symmetric body, obtaining its rotation matrix through the elementary\\nfunctions.\",\"PeriodicalId\":501482,\"journal\":{\"name\":\"arXiv - PHYS - Classical Physics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Classical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.10326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

欧拉-泊松方程属于一阶微分方程,用于确定给定向量场的积分线。这些方程的一般解可以写成演变参数的幂级数。我们计算了自由对称体情况下的这些级数之和,通过基本函数得到了它的旋转矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General solution to Euler-Poisson equations of a free symmetric body by direct summation of power series
Euler-Poisson equations belong to the class of first-order differential equations for determining the integral lines of a given vector field. The general solution to these equations can be written as a power series of the evolution parameter. We calculated the sum of these series for the case of a free symmetric body, obtaining its rotation matrix through the elementary functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信