分离式压实和质点压实

Ando Razafindrakoto
{"title":"分离式压实和质点压实","authors":"Ando Razafindrakoto","doi":"arxiv-2407.11538","DOIUrl":null,"url":null,"abstract":"We discuss conditions under which certain compactifications of topological\nspaces can be obtained by composing the ultrafilter space monad with suitable\nreflectors. In particular, we show that these compactifications inherit their\ncategorical properties from the ultrafilter space monad. We further observe\nthat various constructions such as the prime open filter monad defined by H.\nSimmons, the prime closed filter compactification studied by Bentley and\nHerrlich, as well as the separated completion monad studied by Salbany fall\nwithin the same categorical framework.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separated and prime compactifications\",\"authors\":\"Ando Razafindrakoto\",\"doi\":\"arxiv-2407.11538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss conditions under which certain compactifications of topological\\nspaces can be obtained by composing the ultrafilter space monad with suitable\\nreflectors. In particular, we show that these compactifications inherit their\\ncategorical properties from the ultrafilter space monad. We further observe\\nthat various constructions such as the prime open filter monad defined by H.\\nSimmons, the prime closed filter compactification studied by Bentley and\\nHerrlich, as well as the separated completion monad studied by Salbany fall\\nwithin the same categorical framework.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.11538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了通过将超滤空间一元体与适当的反射体组合而获得拓扑空间的某些紧凑性的条件。我们特别指出,这些压缩从超滤波空间一元体继承了它们的分类性质。我们进一步观察到,各种构造,如西蒙斯(H.Simmons)定义的质开放滤波一元体、本特利(Bentley)和赫尔利希(Herrlich)研究的质封闭滤波紧凑化,以及萨尔班尼(Salbany)研究的分离完备一元体,都属于同一个分类框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separated and prime compactifications
We discuss conditions under which certain compactifications of topological spaces can be obtained by composing the ultrafilter space monad with suitable reflectors. In particular, we show that these compactifications inherit their categorical properties from the ultrafilter space monad. We further observe that various constructions such as the prime open filter monad defined by H. Simmons, the prime closed filter compactification studied by Bentley and Herrlich, as well as the separated completion monad studied by Salbany fall within the same categorical framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信