利用机器学习技术估算 GPS 卫星的差分代码偏差

IF 1 4区 地球科学 Q4 GEOGRAPHY, PHYSICAL
T. Hassan, M. El-Tokhey
{"title":"利用机器学习技术估算 GPS 卫星的差分代码偏差","authors":"T. Hassan, M. El-Tokhey","doi":"10.1080/14498596.2024.2371831","DOIUrl":null,"url":null,"abstract":"In this study, the capabilities of Machine Learning (ML) are exploited to predict the Differential Code Biases (DCBs) of Global Positioning System (GPS) satellites from the broadcast Total Group De...","PeriodicalId":50045,"journal":{"name":"Journal of Spatial Science","volume":"53 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Employing machine learning techniques for estimating the differential code biases of GPS satellites\",\"authors\":\"T. Hassan, M. El-Tokhey\",\"doi\":\"10.1080/14498596.2024.2371831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the capabilities of Machine Learning (ML) are exploited to predict the Differential Code Biases (DCBs) of Global Positioning System (GPS) satellites from the broadcast Total Group De...\",\"PeriodicalId\":50045,\"journal\":{\"name\":\"Journal of Spatial Science\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spatial Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/14498596.2024.2371831\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spatial Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/14498596.2024.2371831","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,利用机器学习(ML)的功能,从广播的总群组偏差(Total Group De)中预测全球定位系统(GPS)卫星的差分码偏差(DCB)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Employing machine learning techniques for estimating the differential code biases of GPS satellites
In this study, the capabilities of Machine Learning (ML) are exploited to predict the Differential Code Biases (DCBs) of Global Positioning System (GPS) satellites from the broadcast Total Group De...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spatial Science
Journal of Spatial Science 地学-地质学
CiteScore
5.00
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Journal of Spatial Science publishes papers broadly across the spatial sciences including such areas as cartography, geodesy, geographic information science, hydrography, digital image analysis and photogrammetry, remote sensing, surveying and related areas. Two types of papers are published by he journal: Research Papers and Professional Papers. Research Papers (including reviews) are peer-reviewed and must meet a minimum standard of making a contribution to the knowledge base of an area of the spatial sciences. This can be achieved through the empirical or theoretical contribution to knowledge that produces significant new outcomes. It is anticipated that Professional Papers will be written by industry practitioners. Professional Papers describe innovative aspects of professional practise and applications that advance the development of the spatial industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信