线性分数变换驱动的共轭方程的正则性和奇异性

Kazuki Okamura
{"title":"线性分数变换驱动的共轭方程的正则性和奇异性","authors":"Kazuki Okamura","doi":"arxiv-2407.11565","DOIUrl":null,"url":null,"abstract":"We consider the conjugate equation driven by two families of finite maps on\nthe unit interval satisfying a compatibility condition. This framework contains\nde Rham's functional equations. We consider some real analytic properties of\nthe solution in the case that the equation is driven by non-affine maps, in\nparticular, linear fractional transformations. We give sufficient conditions\nfor the regularity in the sense of Ullman-Stahl-Totik and for the singularity\nof the solution.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity and singularity for conjugate equations driven by linear fractional transformations\",\"authors\":\"Kazuki Okamura\",\"doi\":\"arxiv-2407.11565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the conjugate equation driven by two families of finite maps on\\nthe unit interval satisfying a compatibility condition. This framework contains\\nde Rham's functional equations. We consider some real analytic properties of\\nthe solution in the case that the equation is driven by non-affine maps, in\\nparticular, linear fractional transformations. We give sufficient conditions\\nfor the regularity in the sense of Ullman-Stahl-Totik and for the singularity\\nof the solution.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.11565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑由单位区间上满足相容条件的两个有限映射族驱动的共轭方程。这个框架包含了德-拉姆函数方程。我们考虑了方程由非非线性映射(尤其是线性分数变换)驱动时解的一些实解析性质。我们给出了 Ullman-Stahl-Totik 意义上的正则性和解的奇异性的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity and singularity for conjugate equations driven by linear fractional transformations
We consider the conjugate equation driven by two families of finite maps on the unit interval satisfying a compatibility condition. This framework contains de Rham's functional equations. We consider some real analytic properties of the solution in the case that the equation is driven by non-affine maps, in particular, linear fractional transformations. We give sufficient conditions for the regularity in the sense of Ullman-Stahl-Totik and for the singularity of the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信