迈向刚性解析空间的 $\mathbb{A}^1$ 同调理论

Christian Dahlhausen, Can Yaylali
{"title":"迈向刚性解析空间的 $\\mathbb{A}^1$ 同调理论","authors":"Christian Dahlhausen, Can Yaylali","doi":"arxiv-2407.09606","DOIUrl":null,"url":null,"abstract":"To any rigid analytic space (in the sense of Fujiwara-Kato) we assign an\n$\\mathbb{A}^1$-invariant rigid analytic homotopy category with coefficients in\nany presentable category. We show some functorial properties of this assignment\nas a functor on the category of rigid analytic spaces. Moreover, we show that\nthere exists a full six functor formalism for the precomposition with the\nanalytification functor by evoking Ayoub's thesis. As an application, we\nidentify connective analytic K-theory in the unstable homotopy category with\nboth $\\mathbb{Z}\\times\\mathrm{BGL}$ and the analytification of connective\nalgebraic K-theory. As a consequence, we get a representability statement for\ncoefficients in light condensed spectra.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards $\\\\mathbb{A}^1$-homotopy theory of rigid analytic spaces\",\"authors\":\"Christian Dahlhausen, Can Yaylali\",\"doi\":\"arxiv-2407.09606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To any rigid analytic space (in the sense of Fujiwara-Kato) we assign an\\n$\\\\mathbb{A}^1$-invariant rigid analytic homotopy category with coefficients in\\nany presentable category. We show some functorial properties of this assignment\\nas a functor on the category of rigid analytic spaces. Moreover, we show that\\nthere exists a full six functor formalism for the precomposition with the\\nanalytification functor by evoking Ayoub's thesis. As an application, we\\nidentify connective analytic K-theory in the unstable homotopy category with\\nboth $\\\\mathbb{Z}\\\\times\\\\mathrm{BGL}$ and the analytification of connective\\nalgebraic K-theory. As a consequence, we get a representability statement for\\ncoefficients in light condensed spectra.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.09606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于任何刚性解析空间(在藤原-加藤的意义上),我们都会分配一个在任何可呈现范畴中具有系数的$mathbb{A}^1$不变刚性解析同调范畴。我们展示了这个赋值作为刚性解析空间范畴上的一个函子的一些函子性质。此外,我们通过唤起阿尤布(Ayoub)的论题,证明了与分析化函子的前组合存在一个完整的六函子形式主义。作为应用,我们用$\mathbb{Z}\times\mathrm{BGL}$和连通代数K理论的分析化来识别不稳定同调范畴中的连通分析K理论。因此,我们得到了光凝聚谱中系数的可表示性声明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards $\mathbb{A}^1$-homotopy theory of rigid analytic spaces
To any rigid analytic space (in the sense of Fujiwara-Kato) we assign an $\mathbb{A}^1$-invariant rigid analytic homotopy category with coefficients in any presentable category. We show some functorial properties of this assignment as a functor on the category of rigid analytic spaces. Moreover, we show that there exists a full six functor formalism for the precomposition with the analytification functor by evoking Ayoub's thesis. As an application, we identify connective analytic K-theory in the unstable homotopy category with both $\mathbb{Z}\times\mathrm{BGL}$ and the analytification of connective algebraic K-theory. As a consequence, we get a representability statement for coefficients in light condensed spectra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信