复超曲面奇点类别上的霍奇结构

Michael K. Brown, Mark E. Walker
{"title":"复超曲面奇点类别上的霍奇结构","authors":"Michael K. Brown, Mark E. Walker","doi":"arxiv-2407.09988","DOIUrl":null,"url":null,"abstract":"Given a complex affine hypersurface with isolated singularity determined by a\nhomogeneous polynomial, we identify the noncommutative Hodge structure on the\nperiodic cyclic homology of its singularity category with the classical Hodge\nstructure on the primitive cohomology of the associated projective\nhypersurface. As a consequence, we show that the Hodge conjecture for the\nprojective hypersurface is equivalent to a dg-categorical analogue of the Hodge\nconjecture for the singularity category.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hodge structure on the singularity category of a complex hypersurface\",\"authors\":\"Michael K. Brown, Mark E. Walker\",\"doi\":\"arxiv-2407.09988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a complex affine hypersurface with isolated singularity determined by a\\nhomogeneous polynomial, we identify the noncommutative Hodge structure on the\\nperiodic cyclic homology of its singularity category with the classical Hodge\\nstructure on the primitive cohomology of the associated projective\\nhypersurface. As a consequence, we show that the Hodge conjecture for the\\nprojective hypersurface is equivalent to a dg-categorical analogue of the Hodge\\nconjecture for the singularity category.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.09988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个由同次多项式决定孤立奇点的复仿射超曲面,我们将其奇点范畴的周期循环同调上的非交换霍奇结构与相关投影超曲面的基元同调上的经典霍奇结构相提并论。因此,我们证明了投影超曲面的霍奇猜想等同于奇点范畴的霍奇猜想的 dg 类类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Hodge structure on the singularity category of a complex hypersurface
Given a complex affine hypersurface with isolated singularity determined by a homogeneous polynomial, we identify the noncommutative Hodge structure on the periodic cyclic homology of its singularity category with the classical Hodge structure on the primitive cohomology of the associated projective hypersurface. As a consequence, we show that the Hodge conjecture for the projective hypersurface is equivalent to a dg-categorical analogue of the Hodge conjecture for the singularity category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信