具有小平移和狄利克特条件的薛定谔算子特征值的渐近性

Pub Date : 2024-07-17 DOI:10.1134/S1064562424702077
D. I. Borisov, D. M. Polyakov
{"title":"具有小平移和狄利克特条件的薛定谔算子特征值的渐近性","authors":"D. I. Borisov,&nbsp;D. M. Polyakov","doi":"10.1134/S1064562424702077","DOIUrl":null,"url":null,"abstract":"<p>We consider a non-self-adjoint Schrödinger operator on the unit interval with Dirichlet conditions perturbed by an operator of small translation. The main result is a three-term asymptotic expansion for the eigenvalues with respect to their index, and this asymptotics is uniform in the small translation. We also show that the system of eigenfunctions and generalized eigenfunctions of the considered operators forms a Bari basis in the space of square integrable functions on the considered unit interval.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics for Eigenvalues of Schrödinger Operator with Small Translation and Dirichlet Condition\",\"authors\":\"D. I. Borisov,&nbsp;D. M. Polyakov\",\"doi\":\"10.1134/S1064562424702077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a non-self-adjoint Schrödinger operator on the unit interval with Dirichlet conditions perturbed by an operator of small translation. The main result is a three-term asymptotic expansion for the eigenvalues with respect to their index, and this asymptotics is uniform in the small translation. We also show that the system of eigenfunctions and generalized eigenfunctions of the considered operators forms a Bari basis in the space of square integrable functions on the considered unit interval.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424702077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424702077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们考虑了单位区间上的一个非自相加薛定谔算子,它具有被小平移算子扰动的 Dirichlet 条件。主要结果是特征值相对于其指数的三项渐近展开,并且这种渐近在小平移中是均匀的。我们还证明,所考虑的算子的特征函数和广义特征函数系统在所考虑的单位区间上的平方可积分函数空间中形成了一个巴里基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymptotics for Eigenvalues of Schrödinger Operator with Small Translation and Dirichlet Condition

Asymptotics for Eigenvalues of Schrödinger Operator with Small Translation and Dirichlet Condition

分享
查看原文
Asymptotics for Eigenvalues of Schrödinger Operator with Small Translation and Dirichlet Condition

We consider a non-self-adjoint Schrödinger operator on the unit interval with Dirichlet conditions perturbed by an operator of small translation. The main result is a three-term asymptotic expansion for the eigenvalues with respect to their index, and this asymptotics is uniform in the small translation. We also show that the system of eigenfunctions and generalized eigenfunctions of the considered operators forms a Bari basis in the space of square integrable functions on the considered unit interval.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信