雅可比最后乘法器和二维超可整定振荡器

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2024-07-16 DOI:10.1007/s12043-024-02786-3
Akash Sinha, Aritra Ghosh
{"title":"雅可比最后乘法器和二维超可整定振荡器","authors":"Akash Sinha,&nbsp;Aritra Ghosh","doi":"10.1007/s12043-024-02786-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we examine the role of the Jacobi last multiplier in the context of two-dimensional oscillators. We first consider two-dimensional unit-mass oscillators admitting a separable Hamiltonian description, i.e., <span>\\(H = H_1 + H_2\\)</span>, where <span>\\(H_1\\)</span> and <span>\\(H_2\\)</span> are the Hamiltonians of two one-dimensional unit-mass oscillators. It is shown that there exists a third functionally-independent first integral <span>\\(\\Theta \\)</span>, ensuring superintegrability. Various examples are explicitly worked out. We then consider position-dependent-mass oscillators and the Bateman pair, where the latter consists of a pair of dissipative linear oscillators. Quite remarkably, the Bateman pair is found to be superintegrable, despite admitting a Hamiltonian which cannot be separated into two isolated (non-interacting) one-dimensional oscillators.\n</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"98 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jacobi last multiplier and two-dimensional superintegrable oscillators\",\"authors\":\"Akash Sinha,&nbsp;Aritra Ghosh\",\"doi\":\"10.1007/s12043-024-02786-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we examine the role of the Jacobi last multiplier in the context of two-dimensional oscillators. We first consider two-dimensional unit-mass oscillators admitting a separable Hamiltonian description, i.e., <span>\\\\(H = H_1 + H_2\\\\)</span>, where <span>\\\\(H_1\\\\)</span> and <span>\\\\(H_2\\\\)</span> are the Hamiltonians of two one-dimensional unit-mass oscillators. It is shown that there exists a third functionally-independent first integral <span>\\\\(\\\\Theta \\\\)</span>, ensuring superintegrability. Various examples are explicitly worked out. We then consider position-dependent-mass oscillators and the Bateman pair, where the latter consists of a pair of dissipative linear oscillators. Quite remarkably, the Bateman pair is found to be superintegrable, despite admitting a Hamiltonian which cannot be separated into two isolated (non-interacting) one-dimensional oscillators.\\n</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"98 3\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-024-02786-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02786-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了雅可比末乘法器在二维振荡器中的作用。我们首先考虑允许可分离哈密顿描述的二维单位质量振荡器,即 \(H = H_1 + H_2\),其中 \(H_1\) 和 \(H_2\) 是两个一维单位质量振荡器的哈密顿。研究表明,存在第三个与函数无关的第一积分 \(\Theta\),确保了超稳定性。我们明确地计算了各种实例。然后,我们考虑了与位置相关的质量振荡器和贝特曼振荡器对,后者由一对耗散线性振荡器组成。值得注意的是,尽管贝特曼振荡器对的哈密尔顿无法分离成两个孤立的(非相互作用的)一维振荡器,但我们发现贝特曼振荡器对是超可integrable 的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jacobi last multiplier and two-dimensional superintegrable oscillators

In this paper, we examine the role of the Jacobi last multiplier in the context of two-dimensional oscillators. We first consider two-dimensional unit-mass oscillators admitting a separable Hamiltonian description, i.e., \(H = H_1 + H_2\), where \(H_1\) and \(H_2\) are the Hamiltonians of two one-dimensional unit-mass oscillators. It is shown that there exists a third functionally-independent first integral \(\Theta \), ensuring superintegrability. Various examples are explicitly worked out. We then consider position-dependent-mass oscillators and the Bateman pair, where the latter consists of a pair of dissipative linear oscillators. Quite remarkably, the Bateman pair is found to be superintegrable, despite admitting a Hamiltonian which cannot be separated into two isolated (non-interacting) one-dimensional oscillators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信