关于准凯勒流形的一个性质

IF 0.6 4区 数学 Q3 MATHEMATICS
G. A. Banaru, M. B. Banaru
{"title":"关于准凯勒流形的一个性质","authors":"G. A. Banaru, M. B. Banaru","doi":"10.1134/s000143462405002x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We prove that if a quasi-Kähler manifold satisfies the <span>\\(\\eta\\)</span>-quasi-umbilical quasi-Sasakian hypersurfaces axiom, then it is a Kähler manifold. We also prove that the quasi-Sasakian structure on an <span>\\(\\eta\\)</span>-quasi-umbilical hypersurface in a quasi-Kähler manifold is either cosymplectic or homothetic to a Sasakian structure. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Property of Quasi-Kähler Manifolds\",\"authors\":\"G. A. Banaru, M. B. Banaru\",\"doi\":\"10.1134/s000143462405002x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We prove that if a quasi-Kähler manifold satisfies the <span>\\\\(\\\\eta\\\\)</span>-quasi-umbilical quasi-Sasakian hypersurfaces axiom, then it is a Kähler manifold. We also prove that the quasi-Sasakian structure on an <span>\\\\(\\\\eta\\\\)</span>-quasi-umbilical hypersurface in a quasi-Kähler manifold is either cosymplectic or homothetic to a Sasakian structure. </p>\",\"PeriodicalId\":18294,\"journal\":{\"name\":\"Mathematical Notes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s000143462405002x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s000143462405002x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 我们证明,如果一个准Kähler流形满足(\eta\)-准伞状准Sasakian超曲面公理,那么它就是一个Kähler流形。我们还证明了准凯勒流形中的(\eta\)准伞状超曲面上的准萨萨结构要么是共折射的,要么是与萨萨结构同调的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Property of Quasi-Kähler Manifolds

Abstract

We prove that if a quasi-Kähler manifold satisfies the \(\eta\)-quasi-umbilical quasi-Sasakian hypersurfaces axiom, then it is a Kähler manifold. We also prove that the quasi-Sasakian structure on an \(\eta\)-quasi-umbilical hypersurface in a quasi-Kähler manifold is either cosymplectic or homothetic to a Sasakian structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信