连接机器学习与热力学,实现精确 pKa 预测

JACS Au Pub Date : 2024-07-17 DOI:10.1021/jacsau.4c00271
Weiliang Luo, Gengmo Zhou, Zhengdan Zhu, Yannan Yuan, Guolin Ke, Zhewei Wei, Zhifeng Gao, Hang Zheng
{"title":"连接机器学习与热力学,实现精确 pKa 预测","authors":"Weiliang Luo, Gengmo Zhou, Zhengdan Zhu, Yannan Yuan, Guolin Ke, Zhewei Wei, Zhifeng Gao, Hang Zheng","doi":"10.1021/jacsau.4c00271","DOIUrl":null,"url":null,"abstract":"Integrating scientific principles into machine learning models to enhance their predictive performance and generalizability is a central challenge in the development of AI for Science. Herein, we introduce Uni-p<i>K</i><sub>a</sub>, a novel framework that successfully incorporates thermodynamic principles into machine learning modeling, achieving high-precision predictions of acid dissociation constants (p<i>K</i><sub>a</sub>), a crucial task in the rational design of drugs and catalysts, as well as a modeling challenge in computational physical chemistry for small organic molecules. Uni-p<i>K</i><sub>a</sub> utilizes a comprehensive free energy model to represent molecular protonation equilibria accurately. It features a structure enumerator that reconstructs molecular configurations from p<i>K</i><sub>a</sub> data, coupled with a neural network that functions as a free energy predictor, ensuring high-throughput, data-driven prediction while preserving thermodynamic consistency. Employing a pretraining-finetuning strategy with both predicted and experimental p<i>K</i><sub>a</sub> data, Uni-p<i>K</i><sub>a</sub> not only achieves state-of-the-art accuracy in chemoinformatics but also shows comparable precision to quantum mechanics-based methods.","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging Machine Learning and Thermodynamics for Accurate pKa Prediction\",\"authors\":\"Weiliang Luo, Gengmo Zhou, Zhengdan Zhu, Yannan Yuan, Guolin Ke, Zhewei Wei, Zhifeng Gao, Hang Zheng\",\"doi\":\"10.1021/jacsau.4c00271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating scientific principles into machine learning models to enhance their predictive performance and generalizability is a central challenge in the development of AI for Science. Herein, we introduce Uni-p<i>K</i><sub>a</sub>, a novel framework that successfully incorporates thermodynamic principles into machine learning modeling, achieving high-precision predictions of acid dissociation constants (p<i>K</i><sub>a</sub>), a crucial task in the rational design of drugs and catalysts, as well as a modeling challenge in computational physical chemistry for small organic molecules. Uni-p<i>K</i><sub>a</sub> utilizes a comprehensive free energy model to represent molecular protonation equilibria accurately. It features a structure enumerator that reconstructs molecular configurations from p<i>K</i><sub>a</sub> data, coupled with a neural network that functions as a free energy predictor, ensuring high-throughput, data-driven prediction while preserving thermodynamic consistency. Employing a pretraining-finetuning strategy with both predicted and experimental p<i>K</i><sub>a</sub> data, Uni-p<i>K</i><sub>a</sub> not only achieves state-of-the-art accuracy in chemoinformatics but also shows comparable precision to quantum mechanics-based methods.\",\"PeriodicalId\":14799,\"journal\":{\"name\":\"JACS Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/jacsau.4c00271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将科学原理融入机器学习模型,以提高其预测性能和普适性,是人工智能促进科学发展的核心挑战。在本文中,我们介绍了Uni-pKa,这是一个新颖的框架,它成功地将热力学原理融入机器学习建模,实现了对酸解离常数(pKa)的高精度预测,这是药物和催化剂合理设计的一项关键任务,也是小有机分子计算物理化学的建模挑战。Uni-pKa 利用全面的自由能模型准确地表示分子质子化平衡。它具有一个结构枚举器,可根据 pKa 数据重建分子构型,并结合一个神经网络作为自由能预测器,确保在保持热力学一致性的同时进行高通量、数据驱动的预测。Uni-pKa 采用预测和实验 pKa 数据的预训练-微调策略,不仅达到了化学信息学领域最先进的精度,而且还显示出与基于量子力学的方法相当的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bridging Machine Learning and Thermodynamics for Accurate pKa Prediction

Bridging Machine Learning and Thermodynamics for Accurate pKa Prediction
Integrating scientific principles into machine learning models to enhance their predictive performance and generalizability is a central challenge in the development of AI for Science. Herein, we introduce Uni-pKa, a novel framework that successfully incorporates thermodynamic principles into machine learning modeling, achieving high-precision predictions of acid dissociation constants (pKa), a crucial task in the rational design of drugs and catalysts, as well as a modeling challenge in computational physical chemistry for small organic molecules. Uni-pKa utilizes a comprehensive free energy model to represent molecular protonation equilibria accurately. It features a structure enumerator that reconstructs molecular configurations from pKa data, coupled with a neural network that functions as a free energy predictor, ensuring high-throughput, data-driven prediction while preserving thermodynamic consistency. Employing a pretraining-finetuning strategy with both predicted and experimental pKa data, Uni-pKa not only achieves state-of-the-art accuracy in chemoinformatics but also shows comparable precision to quantum mechanics-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信