论 $$\mathfrak{L}_{\infty}$ -格尔芬-奈马克态的提升

IF 0.6 4区 数学 Q3 MATHEMATICS
V. A. Mel’nikov
{"title":"论 $$\\mathfrak{L}_{\\infty}$ -格尔芬-奈马克态的提升","authors":"V. A. Mel’nikov","doi":"10.1134/s0001434624050328","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> Let <span>\\(M\\)</span> be a <span>\\(W^{\\ast}\\)</span>-algebra acting on a separable complex Hilbert space <span>\\(H\\)</span>. We show that the inclusion of <span>\\(M\\)</span> into <span>\\(\\mathscr{B}(H)\\)</span> factors through an <span>\\(\\mathfrak{L}_{\\infty}\\)</span>-space only if <span>\\(M\\)</span> is a finite type <span>\\(\\mathrm{I}\\)</span> algebra </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On $$\\\\mathfrak{L}_{\\\\infty}$$ -Liftings of the Gelfand–Naimark Morphism\",\"authors\":\"V. A. Mel’nikov\",\"doi\":\"10.1134/s0001434624050328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> Let <span>\\\\(M\\\\)</span> be a <span>\\\\(W^{\\\\ast}\\\\)</span>-algebra acting on a separable complex Hilbert space <span>\\\\(H\\\\)</span>. We show that the inclusion of <span>\\\\(M\\\\)</span> into <span>\\\\(\\\\mathscr{B}(H)\\\\)</span> factors through an <span>\\\\(\\\\mathfrak{L}_{\\\\infty}\\\\)</span>-space only if <span>\\\\(M\\\\)</span> is a finite type <span>\\\\(\\\\mathrm{I}\\\\)</span> algebra </p>\",\"PeriodicalId\":18294,\"journal\":{\"name\":\"Mathematical Notes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001434624050328\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624050328","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 让 \(M\) 是作用于可分离复希尔伯特空间 \(H\) 的 \(W^{\ast}\)- 代数。我们证明,只有当\(M\)是一个有限类型的\(\mathrm{I}\)代数时,\(M\)对\(\mathscr{B}(H)\)的包含才会通过一个\(\mathfrak{L}_\{infty}\)空间的因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On $$\mathfrak{L}_{\infty}$$ -Liftings of the Gelfand–Naimark Morphism

Abstract

Let \(M\) be a \(W^{\ast}\)-algebra acting on a separable complex Hilbert space \(H\). We show that the inclusion of \(M\) into \(\mathscr{B}(H)\) factors through an \(\mathfrak{L}_{\infty}\)-space only if \(M\) is a finite type \(\mathrm{I}\) algebra

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信