根的能量

IF 0.6 4区 数学 Q3 MATHEMATICS
A. S. Volostnov
{"title":"根的能量","authors":"A. S. Volostnov","doi":"10.1134/s0001434624050250","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> An estimate of the additive energy of roots modulo a prime for sets with small doubling that has recently been obtained by Zaharescu, Kerr, Shkredov, and Shparlinskii is improved. The problem of determining the maximum cardinalities of the sets <span>\\(|A+A|\\)</span> and <span>\\(|f(A)+f(A)|\\)</span>, where <span>\\(f\\)</span> is a polynomial of small degree and <span>\\(A\\)</span> is a subset of a finite field whose size is sufficiently small in comparison with the characteristic of the field, is also considered. In particular, it is proved that </p><span>$$\\max(|A+A|,|A^3+A^3|)\\ge|A|^{16/15},$$</span><p><span>\\(\\max(|A+A|,|A^4+A^4|)\\ge|A|^{25/24}\\)</span>, and <span>\\(\\max(|A+A|,|A^5+A^5|)\\ge|A|^{25/24}\\)</span>. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Energy of Roots\",\"authors\":\"A. S. Volostnov\",\"doi\":\"10.1134/s0001434624050250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> An estimate of the additive energy of roots modulo a prime for sets with small doubling that has recently been obtained by Zaharescu, Kerr, Shkredov, and Shparlinskii is improved. The problem of determining the maximum cardinalities of the sets <span>\\\\(|A+A|\\\\)</span> and <span>\\\\(|f(A)+f(A)|\\\\)</span>, where <span>\\\\(f\\\\)</span> is a polynomial of small degree and <span>\\\\(A\\\\)</span> is a subset of a finite field whose size is sufficiently small in comparison with the characteristic of the field, is also considered. In particular, it is proved that </p><span>$$\\\\max(|A+A|,|A^3+A^3|)\\\\ge|A|^{16/15},$$</span><p><span>\\\\(\\\\max(|A+A|,|A^4+A^4|)\\\\ge|A|^{25/24}\\\\)</span>, and <span>\\\\(\\\\max(|A+A|,|A^5+A^5|)\\\\ge|A|^{25/24}\\\\)</span>. </p>\",\"PeriodicalId\":18294,\"journal\":{\"name\":\"Mathematical Notes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001434624050250\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624050250","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 扎哈里斯库(Zaharescu)、克尔(Kerr)、什克雷多夫(Shkredov)和什帕林斯基(Shparlinskii)最近得到的关于具有小倍增的集合的根模的加法能量的估计值得到了改进。还考虑了确定集合 \(|A+A|\) 和 \(|f(A)+f(A)|\)的最大心数的问题,其中 \(f\) 是小度多项式,\(A\) 是有限域的子集,其大小与域的特征相比足够小。特别是,证明了 $$\max(|A+A|,|A^3+A^3|)ge|A|^{16/15},$$\max(|A+A|,|A^4+A^4|)\ge|A|^{25/24}\),以及\(\max(|A+A|,|A^5+A^5|)\ge|A|^{25/24}\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Energy of Roots

Abstract

An estimate of the additive energy of roots modulo a prime for sets with small doubling that has recently been obtained by Zaharescu, Kerr, Shkredov, and Shparlinskii is improved. The problem of determining the maximum cardinalities of the sets \(|A+A|\) and \(|f(A)+f(A)|\), where \(f\) is a polynomial of small degree and \(A\) is a subset of a finite field whose size is sufficiently small in comparison with the characteristic of the field, is also considered. In particular, it is proved that

$$\max(|A+A|,|A^3+A^3|)\ge|A|^{16/15},$$

\(\max(|A+A|,|A^4+A^4|)\ge|A|^{25/24}\), and \(\max(|A+A|,|A^5+A^5|)\ge|A|^{25/24}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信