矩形约束下的弹性薄膜和薄膜

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
EPL Pub Date : 2024-07-15 DOI:10.1209/0295-5075/ad5a39
A. R. Sprenger, H. Reinken, T. Richter and A. M. Menzel
{"title":"矩形约束下的弹性薄膜和薄膜","authors":"A. R. Sprenger, H. Reinken, T. Richter and A. M. Menzel","doi":"10.1209/0295-5075/ad5a39","DOIUrl":null,"url":null,"abstract":"We address the deformations within a thin elastic film or membrane in a two-dimensional rectangular confinement. To this end, analytical considerations of the Navier-Cauchy equations describing linear elasticity are performed in the presence of a localized force center, that is, a corresponding Green's function is determined, under no-slip conditions at the clamped boundaries. Specifically, we find resulting displacement fields for different positions of the force center. It turns out that clamping regularizes the solution when compared to an infinitely extended system. Increasing compressibility renders the displacement field more homogeneous under the given confinement. Moreover, varying aspect ratios of the rectangular confining frame qualitatively affect the symmetry and appearance of the displacement field. Our results are confirmed by comparison with corresponding finite-element simulations.","PeriodicalId":11738,"journal":{"name":"EPL","volume":"63 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thin elastic films and membranes under rectangular confinement\",\"authors\":\"A. R. Sprenger, H. Reinken, T. Richter and A. M. Menzel\",\"doi\":\"10.1209/0295-5075/ad5a39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the deformations within a thin elastic film or membrane in a two-dimensional rectangular confinement. To this end, analytical considerations of the Navier-Cauchy equations describing linear elasticity are performed in the presence of a localized force center, that is, a corresponding Green's function is determined, under no-slip conditions at the clamped boundaries. Specifically, we find resulting displacement fields for different positions of the force center. It turns out that clamping regularizes the solution when compared to an infinitely extended system. Increasing compressibility renders the displacement field more homogeneous under the given confinement. Moreover, varying aspect ratios of the rectangular confining frame qualitatively affect the symmetry and appearance of the displacement field. Our results are confirmed by comparison with corresponding finite-element simulations.\",\"PeriodicalId\":11738,\"journal\":{\"name\":\"EPL\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPL\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/ad5a39\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad5a39","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们探讨了二维矩形约束中弹性薄膜或薄膜内部的变形问题。为此,我们对描述线性弹性的 Navier-Cauchy 方程进行了分析考虑,在存在局部力中心的情况下,即在夹紧边界无滑动条件下,确定了相应的格林函数。具体来说,我们找到了力中心不同位置的位移场。结果发现,与无限扩展的系统相比,箝位会使解法正则化。在给定的约束条件下,可压缩性的增加使位移场更加均匀。此外,矩形约束框架的不同长宽比会对位移场的对称性和外观产生定性影响。通过与相应的有限元模拟进行比较,我们的结果得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thin elastic films and membranes under rectangular confinement
We address the deformations within a thin elastic film or membrane in a two-dimensional rectangular confinement. To this end, analytical considerations of the Navier-Cauchy equations describing linear elasticity are performed in the presence of a localized force center, that is, a corresponding Green's function is determined, under no-slip conditions at the clamped boundaries. Specifically, we find resulting displacement fields for different positions of the force center. It turns out that clamping regularizes the solution when compared to an infinitely extended system. Increasing compressibility renders the displacement field more homogeneous under the given confinement. Moreover, varying aspect ratios of the rectangular confining frame qualitatively affect the symmetry and appearance of the displacement field. Our results are confirmed by comparison with corresponding finite-element simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPL
EPL 物理-物理:综合
CiteScore
3.30
自引率
5.60%
发文量
332
审稿时长
1.9 months
期刊介绍: General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology. Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate). EPL also publishes Comments on Letters previously published in the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信