带弹性固定端梁的欧拉-伯努利准线性振动方程的周期解

IF 0.6 4区 数学 Q3 MATHEMATICS
I. A. Rudakov
{"title":"带弹性固定端梁的欧拉-伯努利准线性振动方程的周期解","authors":"I. A. Rudakov","doi":"10.1134/s0001434624050158","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We consider the problem about time-periodic solutions of the quasilinear Euler–Bernoulli vibration equation for a beam subjected to tension along the horizontal axis. The boundary conditions correspond to the cases of elastically fixed, clamped, and hinged ends. The nonlinear term satisfies the nonresonance condition at infinity. Using the Schauder principle, we prove a theorem on the existence and uniqueness of a periodic solution. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":"29 3 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic Solutions of the Euler–Bernoulli Quasilinear Vibration Equation for a Beam with an Elastically Fixed End\",\"authors\":\"I. A. Rudakov\",\"doi\":\"10.1134/s0001434624050158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We consider the problem about time-periodic solutions of the quasilinear Euler–Bernoulli vibration equation for a beam subjected to tension along the horizontal axis. The boundary conditions correspond to the cases of elastically fixed, clamped, and hinged ends. The nonlinear term satisfies the nonresonance condition at infinity. Using the Schauder principle, we prove a theorem on the existence and uniqueness of a periodic solution. </p>\",\"PeriodicalId\":18294,\"journal\":{\"name\":\"Mathematical Notes\",\"volume\":\"29 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001434624050158\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624050158","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们考虑了沿水平轴受拉梁的准线性欧拉-伯努利振动方程的时间周期解问题。边界条件分别对应于弹性固定端、夹紧端和铰链端。非线性项在无穷远处满足非共振条件。利用 Schauder 原理,我们证明了周期解的存在性和唯一性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic Solutions of the Euler–Bernoulli Quasilinear Vibration Equation for a Beam with an Elastically Fixed End

Abstract

We consider the problem about time-periodic solutions of the quasilinear Euler–Bernoulli vibration equation for a beam subjected to tension along the horizontal axis. The boundary conditions correspond to the cases of elastically fixed, clamped, and hinged ends. The nonlinear term satisfies the nonresonance condition at infinity. Using the Schauder principle, we prove a theorem on the existence and uniqueness of a periodic solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信