论保留不相关性的双加法算子

IF 0.6 4区 数学 Q3 MATHEMATICS
N. A. Dzhusoeva
{"title":"论保留不相关性的双加法算子","authors":"N. A. Dzhusoeva","doi":"10.1134/s0001434624050079","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> Orthogonally biadditive operators preserving disjointness are studied. It is proved that, that for a Dedekind complete vector lattice <span>\\(W\\)</span> and order ideals <span>\\(E\\)</span> and <span>\\(F\\)</span> in <span>\\(W\\)</span>, the set <span>\\(\\mathfrak{N}(E,F;W)\\)</span> of all orthogonally biadditive operators commuting with projections is a band in the Dedekind complete vector lattice <span>\\(\\mathcal{OBA}_r(E,F;W)\\)</span> of all regular orthogonally biadditive operators from the Cartesian product of <span>\\(E\\)</span> and <span>\\(F\\)</span> to <span>\\(W\\)</span>. A general form of the order projection onto this band is obtained, and an operator version of the Radon–Nikodym theorem for disjointness-preserving positive orthogonally biadditive operators is proved. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":"21 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Disjointness-Preserving Biadditive Operators\",\"authors\":\"N. A. Dzhusoeva\",\"doi\":\"10.1134/s0001434624050079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> Orthogonally biadditive operators preserving disjointness are studied. It is proved that, that for a Dedekind complete vector lattice <span>\\\\(W\\\\)</span> and order ideals <span>\\\\(E\\\\)</span> and <span>\\\\(F\\\\)</span> in <span>\\\\(W\\\\)</span>, the set <span>\\\\(\\\\mathfrak{N}(E,F;W)\\\\)</span> of all orthogonally biadditive operators commuting with projections is a band in the Dedekind complete vector lattice <span>\\\\(\\\\mathcal{OBA}_r(E,F;W)\\\\)</span> of all regular orthogonally biadditive operators from the Cartesian product of <span>\\\\(E\\\\)</span> and <span>\\\\(F\\\\)</span> to <span>\\\\(W\\\\)</span>. A general form of the order projection onto this band is obtained, and an operator version of the Radon–Nikodym theorem for disjointness-preserving positive orthogonally biadditive operators is proved. </p>\",\"PeriodicalId\":18294,\"journal\":{\"name\":\"Mathematical Notes\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001434624050079\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624050079","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 研究了保持不相交性的正交双加法算子。研究证明,对于一个 Dedekind 完全向量网格 (W)和在 (W)中的阶理想 (E)和 (F),所有与投影相交的正交双相加算子的集合 (mathfrak{N}(E,F.W))是 Dedekind 中的一个带;W))中所有与投影相通的正交双向算子的集合是从\(E\)和\(F\)的笛卡尔积到\(W\)的所有正交双向算子的戴德金完全向量网格\(\mathcal{OBA}_r(E,F;W)\)中的一个带。得到了这个带的阶投影的一般形式,并证明了不相交保留正交双相加算子的 Radon-Nikodym 定理的算子版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Disjointness-Preserving Biadditive Operators

Abstract

Orthogonally biadditive operators preserving disjointness are studied. It is proved that, that for a Dedekind complete vector lattice \(W\) and order ideals \(E\) and \(F\) in \(W\), the set \(\mathfrak{N}(E,F;W)\) of all orthogonally biadditive operators commuting with projections is a band in the Dedekind complete vector lattice \(\mathcal{OBA}_r(E,F;W)\) of all regular orthogonally biadditive operators from the Cartesian product of \(E\) and \(F\) to \(W\). A general form of the order projection onto this band is obtained, and an operator version of the Radon–Nikodym theorem for disjointness-preserving positive orthogonally biadditive operators is proved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信