热带雨林的降雨量变化与落叶-常绿共存

IF 1.2 4区 环境科学与生态学 Q4 ECOLOGY
Andrew J. Muehleisen, Naomi B. Schwartz, Simon M. Stump, A. Carla Staver
{"title":"热带雨林的降雨量变化与落叶-常绿共存","authors":"Andrew J. Muehleisen, Naomi B. Schwartz, Simon M. Stump, A. Carla Staver","doi":"10.1007/s12080-024-00588-2","DOIUrl":null,"url":null,"abstract":"<p>In tropical forests, deciduous and evergreen leaf habits represent contrasting tree adaptations to precipitation seasonality. Both rainfall seasonality and interannual variation in rainfall are determinants of forest deciduousness, but their relative influence is not well understood. In this study, we evaluate the extent of deciduous-evergreen coexistence in tropical forests and develop a simple model of competition for water between leaf habits. Using this model, we formalize two mechanisms representing rainfall variability across time scales that may explain their stable coexistence: the temporal storage effect via interannual variability in rainfall vs. rainfall partitioning via evergreen access to dry-season rainfall. In our model, both mechanisms resulted in coexistence, but coexistence was more robust via resource partitioning. Empirically, remotely sensed deciduousness increased with precipitation seasonality, but effects of interannual rainfall variability on deciduousness were minor. We hypothesize that dry-season rainfall may prove a stronger influence on coexistence between leaf habits, and that changes in rainfall seasonality will have a greater impact on forest deciduousness than changes in the interannual variability of rainfall.</p>","PeriodicalId":51198,"journal":{"name":"Theoretical Ecology","volume":"8 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainfall variability and deciduous-evergreen coexistence in tropical forests\",\"authors\":\"Andrew J. Muehleisen, Naomi B. Schwartz, Simon M. Stump, A. Carla Staver\",\"doi\":\"10.1007/s12080-024-00588-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In tropical forests, deciduous and evergreen leaf habits represent contrasting tree adaptations to precipitation seasonality. Both rainfall seasonality and interannual variation in rainfall are determinants of forest deciduousness, but their relative influence is not well understood. In this study, we evaluate the extent of deciduous-evergreen coexistence in tropical forests and develop a simple model of competition for water between leaf habits. Using this model, we formalize two mechanisms representing rainfall variability across time scales that may explain their stable coexistence: the temporal storage effect via interannual variability in rainfall vs. rainfall partitioning via evergreen access to dry-season rainfall. In our model, both mechanisms resulted in coexistence, but coexistence was more robust via resource partitioning. Empirically, remotely sensed deciduousness increased with precipitation seasonality, but effects of interannual rainfall variability on deciduousness were minor. We hypothesize that dry-season rainfall may prove a stronger influence on coexistence between leaf habits, and that changes in rainfall seasonality will have a greater impact on forest deciduousness than changes in the interannual variability of rainfall.</p>\",\"PeriodicalId\":51198,\"journal\":{\"name\":\"Theoretical Ecology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s12080-024-00588-2\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12080-024-00588-2","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在热带森林中,落叶和常绿的叶片习性代表了树木对降水季节性的不同适应。降雨季节性和降雨年际变化都是森林落叶性的决定因素,但它们的相对影响还不十分清楚。在这项研究中,我们评估了热带雨林中落叶-常绿共存的程度,并建立了一个简单的叶片习性间争夺水分的模型。利用该模型,我们正式确定了代表不同时间尺度降雨量变化的两种机制,这两种机制可以解释它们之间的稳定共存:通过降雨量的年际变化产生的时间储存效应与通过常绿植物获取旱季降雨量产生的降雨分区效应。在我们的模型中,两种机制都导致了共存,但通过资源分配实现的共存更为稳固。根据经验,遥感落叶随降水季节性的增加而增加,但年际降雨量变化对落叶的影响较小。我们假设,旱季降雨可能会对不同落叶习性之间的共存产生更大的影响,而且降雨季节性的变化比降雨年际变化对森林落叶性的影响更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rainfall variability and deciduous-evergreen coexistence in tropical forests

Rainfall variability and deciduous-evergreen coexistence in tropical forests

In tropical forests, deciduous and evergreen leaf habits represent contrasting tree adaptations to precipitation seasonality. Both rainfall seasonality and interannual variation in rainfall are determinants of forest deciduousness, but their relative influence is not well understood. In this study, we evaluate the extent of deciduous-evergreen coexistence in tropical forests and develop a simple model of competition for water between leaf habits. Using this model, we formalize two mechanisms representing rainfall variability across time scales that may explain their stable coexistence: the temporal storage effect via interannual variability in rainfall vs. rainfall partitioning via evergreen access to dry-season rainfall. In our model, both mechanisms resulted in coexistence, but coexistence was more robust via resource partitioning. Empirically, remotely sensed deciduousness increased with precipitation seasonality, but effects of interannual rainfall variability on deciduousness were minor. We hypothesize that dry-season rainfall may prove a stronger influence on coexistence between leaf habits, and that changes in rainfall seasonality will have a greater impact on forest deciduousness than changes in the interannual variability of rainfall.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Ecology
Theoretical Ecology 环境科学-生态学
CiteScore
3.30
自引率
6.20%
发文量
23
审稿时长
>12 weeks
期刊介绍: Theoretical Ecology publishes innovative research in theoretical ecology, broadly defined. Papers should use theoretical approaches to answer questions of ecological interest and appeal to and be readable by a broad audience of ecologists. Work that uses mathematical, statistical, computational, or conceptual approaches is all welcomed, provided that the goal is to increase ecological understanding. Papers that only use existing approaches to analyze data, or are only mathematical analyses that do not further ecological understanding, are not appropriate. Work that bridges disciplinary boundaries, such as the intersection between quantitative social sciences and ecology, or physical influences on ecological processes, will also be particularly welcome. All areas of theoretical ecology, including ecophysiology, population ecology, behavioral ecology, evolutionary ecology, ecosystem ecology, community ecology, and ecosystem and landscape ecology are all appropriate. Theoretical papers that focus on applied ecological questions are also of particular interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信