热带雨林的降雨量变化与落叶-常绿共存

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Andrew J. Muehleisen, Naomi B. Schwartz, Simon M. Stump, A. Carla Staver
{"title":"热带雨林的降雨量变化与落叶-常绿共存","authors":"Andrew J. Muehleisen, Naomi B. Schwartz, Simon M. Stump, A. Carla Staver","doi":"10.1007/s12080-024-00588-2","DOIUrl":null,"url":null,"abstract":"<p>In tropical forests, deciduous and evergreen leaf habits represent contrasting tree adaptations to precipitation seasonality. Both rainfall seasonality and interannual variation in rainfall are determinants of forest deciduousness, but their relative influence is not well understood. In this study, we evaluate the extent of deciduous-evergreen coexistence in tropical forests and develop a simple model of competition for water between leaf habits. Using this model, we formalize two mechanisms representing rainfall variability across time scales that may explain their stable coexistence: the temporal storage effect via interannual variability in rainfall vs. rainfall partitioning via evergreen access to dry-season rainfall. In our model, both mechanisms resulted in coexistence, but coexistence was more robust via resource partitioning. Empirically, remotely sensed deciduousness increased with precipitation seasonality, but effects of interannual rainfall variability on deciduousness were minor. We hypothesize that dry-season rainfall may prove a stronger influence on coexistence between leaf habits, and that changes in rainfall seasonality will have a greater impact on forest deciduousness than changes in the interannual variability of rainfall.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainfall variability and deciduous-evergreen coexistence in tropical forests\",\"authors\":\"Andrew J. Muehleisen, Naomi B. Schwartz, Simon M. Stump, A. Carla Staver\",\"doi\":\"10.1007/s12080-024-00588-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In tropical forests, deciduous and evergreen leaf habits represent contrasting tree adaptations to precipitation seasonality. Both rainfall seasonality and interannual variation in rainfall are determinants of forest deciduousness, but their relative influence is not well understood. In this study, we evaluate the extent of deciduous-evergreen coexistence in tropical forests and develop a simple model of competition for water between leaf habits. Using this model, we formalize two mechanisms representing rainfall variability across time scales that may explain their stable coexistence: the temporal storage effect via interannual variability in rainfall vs. rainfall partitioning via evergreen access to dry-season rainfall. In our model, both mechanisms resulted in coexistence, but coexistence was more robust via resource partitioning. Empirically, remotely sensed deciduousness increased with precipitation seasonality, but effects of interannual rainfall variability on deciduousness were minor. We hypothesize that dry-season rainfall may prove a stronger influence on coexistence between leaf habits, and that changes in rainfall seasonality will have a greater impact on forest deciduousness than changes in the interannual variability of rainfall.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s12080-024-00588-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12080-024-00588-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在热带森林中,落叶和常绿的叶片习性代表了树木对降水季节性的不同适应。降雨季节性和降雨年际变化都是森林落叶性的决定因素,但它们的相对影响还不十分清楚。在这项研究中,我们评估了热带雨林中落叶-常绿共存的程度,并建立了一个简单的叶片习性间争夺水分的模型。利用该模型,我们正式确定了代表不同时间尺度降雨量变化的两种机制,这两种机制可以解释它们之间的稳定共存:通过降雨量的年际变化产生的时间储存效应与通过常绿植物获取旱季降雨量产生的降雨分区效应。在我们的模型中,两种机制都导致了共存,但通过资源分配实现的共存更为稳固。根据经验,遥感落叶随降水季节性的增加而增加,但年际降雨量变化对落叶的影响较小。我们假设,旱季降雨可能会对不同落叶习性之间的共存产生更大的影响,而且降雨季节性的变化比降雨年际变化对森林落叶性的影响更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rainfall variability and deciduous-evergreen coexistence in tropical forests

Rainfall variability and deciduous-evergreen coexistence in tropical forests

In tropical forests, deciduous and evergreen leaf habits represent contrasting tree adaptations to precipitation seasonality. Both rainfall seasonality and interannual variation in rainfall are determinants of forest deciduousness, but their relative influence is not well understood. In this study, we evaluate the extent of deciduous-evergreen coexistence in tropical forests and develop a simple model of competition for water between leaf habits. Using this model, we formalize two mechanisms representing rainfall variability across time scales that may explain their stable coexistence: the temporal storage effect via interannual variability in rainfall vs. rainfall partitioning via evergreen access to dry-season rainfall. In our model, both mechanisms resulted in coexistence, but coexistence was more robust via resource partitioning. Empirically, remotely sensed deciduousness increased with precipitation seasonality, but effects of interannual rainfall variability on deciduousness were minor. We hypothesize that dry-season rainfall may prove a stronger influence on coexistence between leaf habits, and that changes in rainfall seasonality will have a greater impact on forest deciduousness than changes in the interannual variability of rainfall.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信