在近线性时间内部分实现最大流量和最小成本流量

Nithin Kavi
{"title":"在近线性时间内部分实现最大流量和最小成本流量","authors":"Nithin Kavi","doi":"arxiv-2407.10034","DOIUrl":null,"url":null,"abstract":"In 2022, Chen et al. proposed an algorithm in \\cite{main} that solves the min\ncost flow problem in $m^{1 + o(1)} \\log U \\log C$ time, where $m$ is the number\nof edges in the graph, $U$ is an upper bound on capacities and $C$ is an upper\nbound on costs. However, as far as the authors of \\cite{main} know, no one has\nimplemented their algorithm to date. In this paper, we discuss implementations\nof several key portions of the algorithm given in \\cite{main}, including the\njustifications for specific implementation choices. For the portions of the\nalgorithm that we do not implement, we provide stubs. We then go through the\nentire algorithm and calculate the $m^{o(1)}$ term more precisely. Finally, we\nconclude with potential directions for future work in this area.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial Implementation of Max Flow and Min Cost Flow in Almost-Linear Time\",\"authors\":\"Nithin Kavi\",\"doi\":\"arxiv-2407.10034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2022, Chen et al. proposed an algorithm in \\\\cite{main} that solves the min\\ncost flow problem in $m^{1 + o(1)} \\\\log U \\\\log C$ time, where $m$ is the number\\nof edges in the graph, $U$ is an upper bound on capacities and $C$ is an upper\\nbound on costs. However, as far as the authors of \\\\cite{main} know, no one has\\nimplemented their algorithm to date. In this paper, we discuss implementations\\nof several key portions of the algorithm given in \\\\cite{main}, including the\\njustifications for specific implementation choices. For the portions of the\\nalgorithm that we do not implement, we provide stubs. We then go through the\\nentire algorithm and calculate the $m^{o(1)}$ term more precisely. Finally, we\\nconclude with potential directions for future work in this area.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.10034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2022 年,Chen 等人在\cite{main}中提出了一种算法,可以在 $m^{1 + o(1)} \log U \log C$ 时间内解决最小成本流问题,其中 $m$ 是图中的边数,$U$ 是容量上限,$C$ 是成本上限。然而,据 \cite{main} 的作者所知,迄今为止还没有人实现过他们的算法。在本文中,我们将讨论 \cite{main}中给出的算法的几个关键部分的实现,包括具体实现选择的理由。对于我们没有实现的算法部分,我们将提供存根。然后,我们将回顾整个算法,并更精确地计算 $m^{o(1)}$ 项。最后,我们总结了这一领域未来工作的潜在方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial Implementation of Max Flow and Min Cost Flow in Almost-Linear Time
In 2022, Chen et al. proposed an algorithm in \cite{main} that solves the min cost flow problem in $m^{1 + o(1)} \log U \log C$ time, where $m$ is the number of edges in the graph, $U$ is an upper bound on capacities and $C$ is an upper bound on costs. However, as far as the authors of \cite{main} know, no one has implemented their algorithm to date. In this paper, we discuss implementations of several key portions of the algorithm given in \cite{main}, including the justifications for specific implementation choices. For the portions of the algorithm that we do not implement, we provide stubs. We then go through the entire algorithm and calculate the $m^{o(1)}$ term more precisely. Finally, we conclude with potential directions for future work in this area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信