无热扩散三维 MHD-Boussinesq 方程的全局正则性标准

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Zhengguang Guo, Zunzun Zhang, Caidi Zhao
{"title":"无热扩散三维 MHD-Boussinesq 方程的全局正则性标准","authors":"Zhengguang Guo, Zunzun Zhang, Caidi Zhao","doi":"10.4310/cms.2024.v22.n5.a7","DOIUrl":null,"url":null,"abstract":"We study the global regularity for the three dimensional incompressible magnetohydrodynamic-Boussinesq (MHD-Boussinesq) equations. By establishing some sufficient regularity conditions in terms of partial components of velocity and magnetic fields, we prove that solutions to the MHD-Boussinesq equations without thermal diffusivity will not blow-up in any finite time.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"21 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global regularity criteria of the 3D MHD-Boussinesq equations without thermal diffusion\",\"authors\":\"Zhengguang Guo, Zunzun Zhang, Caidi Zhao\",\"doi\":\"10.4310/cms.2024.v22.n5.a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the global regularity for the three dimensional incompressible magnetohydrodynamic-Boussinesq (MHD-Boussinesq) equations. By establishing some sufficient regularity conditions in terms of partial components of velocity and magnetic fields, we prove that solutions to the MHD-Boussinesq equations without thermal diffusivity will not blow-up in any finite time.\",\"PeriodicalId\":50659,\"journal\":{\"name\":\"Communications in Mathematical Sciences\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2024.v22.n5.a7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n5.a7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了三维不可压缩磁流体-布西尼斯克(MHD-Boussinesq)方程的全局正则性。通过建立速度场和磁场部分分量的充分正则性条件,我们证明了无热扩散的 MHD-Boussinesq 方程的解在任何有限时间内都不会爆炸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global regularity criteria of the 3D MHD-Boussinesq equations without thermal diffusion
We study the global regularity for the three dimensional incompressible magnetohydrodynamic-Boussinesq (MHD-Boussinesq) equations. By establishing some sufficient regularity conditions in terms of partial components of velocity and magnetic fields, we prove that solutions to the MHD-Boussinesq equations without thermal diffusivity will not blow-up in any finite time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信