{"title":"具有加性噪声的随机卡恩-希利亚德方程全离散方案的强收敛率","authors":"Ruisheng Qi, Meng Cai, Xiaojie Wang","doi":"10.4310/cms.2024.v22.n5.a6","DOIUrl":null,"url":null,"abstract":"The first aim of this paper is to examine existence, uniqueness and regularity for the stochastic Cahn–Hilliard equation with additive noise in space dimension $d\\leq 3$. By applying a spectral Galerkin method to the infinite dimensional equation, we elaborate the well-posedness and regularity of the finite dimensional approximate problem. The key idea lies in transforming the stochastic problem with additive noise into an equivalent random equation. The regularity of the solution to the equivalent random equation is obtained, in one dimension, with the aid of the Gagliardo–Nirenberg inequality and is done in two and three dimensions, by the energy argument. Further, the approximate solution is shown to be strongly convergent to the unique mild solution of the original stochastic equation, whose spatio-temporal regularity can be attained by similar arguments. In addition, a fully discrete approximation of such problem is investigated, performed by the spectral Galerkin method in space and the backward Euler method in time. The previously obtained regularity results help us to identify strong convergence rates of the fully discrete scheme. Numerical examples are finally included to confirm the theoretical findings.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong convergence rates of a fully discrete scheme for the stochastic Cahn-Hilliard equation with additive noise\",\"authors\":\"Ruisheng Qi, Meng Cai, Xiaojie Wang\",\"doi\":\"10.4310/cms.2024.v22.n5.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first aim of this paper is to examine existence, uniqueness and regularity for the stochastic Cahn–Hilliard equation with additive noise in space dimension $d\\\\leq 3$. By applying a spectral Galerkin method to the infinite dimensional equation, we elaborate the well-posedness and regularity of the finite dimensional approximate problem. The key idea lies in transforming the stochastic problem with additive noise into an equivalent random equation. The regularity of the solution to the equivalent random equation is obtained, in one dimension, with the aid of the Gagliardo–Nirenberg inequality and is done in two and three dimensions, by the energy argument. Further, the approximate solution is shown to be strongly convergent to the unique mild solution of the original stochastic equation, whose spatio-temporal regularity can be attained by similar arguments. In addition, a fully discrete approximation of such problem is investigated, performed by the spectral Galerkin method in space and the backward Euler method in time. The previously obtained regularity results help us to identify strong convergence rates of the fully discrete scheme. Numerical examples are finally included to confirm the theoretical findings.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2024.v22.n5.a6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n5.a6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Strong convergence rates of a fully discrete scheme for the stochastic Cahn-Hilliard equation with additive noise
The first aim of this paper is to examine existence, uniqueness and regularity for the stochastic Cahn–Hilliard equation with additive noise in space dimension $d\leq 3$. By applying a spectral Galerkin method to the infinite dimensional equation, we elaborate the well-posedness and regularity of the finite dimensional approximate problem. The key idea lies in transforming the stochastic problem with additive noise into an equivalent random equation. The regularity of the solution to the equivalent random equation is obtained, in one dimension, with the aid of the Gagliardo–Nirenberg inequality and is done in two and three dimensions, by the energy argument. Further, the approximate solution is shown to be strongly convergent to the unique mild solution of the original stochastic equation, whose spatio-temporal regularity can be attained by similar arguments. In addition, a fully discrete approximation of such problem is investigated, performed by the spectral Galerkin method in space and the backward Euler method in time. The previously obtained regularity results help us to identify strong convergence rates of the fully discrete scheme. Numerical examples are finally included to confirm the theoretical findings.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.