三维普朗特边界层方程的 Gevrey-2 长期存在解

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Xinghong Pan, Chao-Jiang Xu
{"title":"三维普朗特边界层方程的 Gevrey-2 长期存在解","authors":"Xinghong Pan, Chao-Jiang Xu","doi":"10.4310/cms.2024.v22.n5.a3","DOIUrl":null,"url":null,"abstract":"For the three dimensional Prandtl boundary layer equations, we will show that for arbitrary $M$ and sufficiently small $\\epsilon$, the lifespan of the Gevrey-2 solution is at least of size $\\epsilon^{-M}$ if the initial data lies in suitable Gevrey-2 spaces with size of $\\epsilon$.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"21 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-time existence of Gevrey-2 solutions to the 3D Prandtl boundary layer equations\",\"authors\":\"Xinghong Pan, Chao-Jiang Xu\",\"doi\":\"10.4310/cms.2024.v22.n5.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the three dimensional Prandtl boundary layer equations, we will show that for arbitrary $M$ and sufficiently small $\\\\epsilon$, the lifespan of the Gevrey-2 solution is at least of size $\\\\epsilon^{-M}$ if the initial data lies in suitable Gevrey-2 spaces with size of $\\\\epsilon$.\",\"PeriodicalId\":50659,\"journal\":{\"name\":\"Communications in Mathematical Sciences\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2024.v22.n5.a3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n5.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于三维普朗特边界层方程,我们将证明,对于任意的 $M$ 和足够小的 $\epsilon$,如果初始数据位于大小为 $\epsilon$ 的合适 Gevrey-2 空间中,Gevrey-2 解的寿命至少为 $\epsilon^{-M}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-time existence of Gevrey-2 solutions to the 3D Prandtl boundary layer equations
For the three dimensional Prandtl boundary layer equations, we will show that for arbitrary $M$ and sufficiently small $\epsilon$, the lifespan of the Gevrey-2 solution is at least of size $\epsilon^{-M}$ if the initial data lies in suitable Gevrey-2 spaces with size of $\epsilon$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信