{"title":"三维普朗特边界层方程的 Gevrey-2 长期存在解","authors":"Xinghong Pan, Chao-Jiang Xu","doi":"10.4310/cms.2024.v22.n5.a3","DOIUrl":null,"url":null,"abstract":"For the three dimensional Prandtl boundary layer equations, we will show that for arbitrary $M$ and sufficiently small $\\epsilon$, the lifespan of the Gevrey-2 solution is at least of size $\\epsilon^{-M}$ if the initial data lies in suitable Gevrey-2 spaces with size of $\\epsilon$.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"21 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-time existence of Gevrey-2 solutions to the 3D Prandtl boundary layer equations\",\"authors\":\"Xinghong Pan, Chao-Jiang Xu\",\"doi\":\"10.4310/cms.2024.v22.n5.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the three dimensional Prandtl boundary layer equations, we will show that for arbitrary $M$ and sufficiently small $\\\\epsilon$, the lifespan of the Gevrey-2 solution is at least of size $\\\\epsilon^{-M}$ if the initial data lies in suitable Gevrey-2 spaces with size of $\\\\epsilon$.\",\"PeriodicalId\":50659,\"journal\":{\"name\":\"Communications in Mathematical Sciences\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2024.v22.n5.a3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n5.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Long-time existence of Gevrey-2 solutions to the 3D Prandtl boundary layer equations
For the three dimensional Prandtl boundary layer equations, we will show that for arbitrary $M$ and sufficiently small $\epsilon$, the lifespan of the Gevrey-2 solution is at least of size $\epsilon^{-M}$ if the initial data lies in suitable Gevrey-2 spaces with size of $\epsilon$.
期刊介绍:
Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.