减少流动性大数据中的偏差:大型公交系统监测案例研究

IF 3.3 3区 工程技术 Q2 TRANSPORTATION
Feilong Wang , Xuegang (Jeff) Ban , Peng Chen , Chenxi Liu , Rong Zhao
{"title":"减少流动性大数据中的偏差:大型公交系统监测案例研究","authors":"Feilong Wang ,&nbsp;Xuegang (Jeff) Ban ,&nbsp;Peng Chen ,&nbsp;Chenxi Liu ,&nbsp;Rong Zhao","doi":"10.1080/19427867.2024.2379703","DOIUrl":null,"url":null,"abstract":"<div><div>Big mobility data (BMD) have shown many advantages in studying human mobility and evaluating the performance of transportation systems. However, the quality of BMD remains poorly understood. This study evaluates biases in BMD and develops mitigation methods. Using Google and Apple mobility data as examples, this study compares them with benchmark data from governmental agencies. Spatio-temporal discrepancies between BMD and benchmark are observed and their impacts on transportation applications are investigated, emphasizing the urgent need to address these biases to prevent misguided policymaking. This study further proposes and tests a bias mitigation method. It is shown that the mitigated BMD could generate valuable insights into large-scale public transit systems across 100+ US counties, revealing regional disparities of the recovery of transit systems from the COVID-19. This study underscores the importance of caution when using BMD in transportation research and presents effective mitigation strategies that would benefit practitioners.</div></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"17 4","pages":"Pages 762-775"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating biases in big mobility data: a case study of monitoring large-scale transit systems\",\"authors\":\"Feilong Wang ,&nbsp;Xuegang (Jeff) Ban ,&nbsp;Peng Chen ,&nbsp;Chenxi Liu ,&nbsp;Rong Zhao\",\"doi\":\"10.1080/19427867.2024.2379703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Big mobility data (BMD) have shown many advantages in studying human mobility and evaluating the performance of transportation systems. However, the quality of BMD remains poorly understood. This study evaluates biases in BMD and develops mitigation methods. Using Google and Apple mobility data as examples, this study compares them with benchmark data from governmental agencies. Spatio-temporal discrepancies between BMD and benchmark are observed and their impacts on transportation applications are investigated, emphasizing the urgent need to address these biases to prevent misguided policymaking. This study further proposes and tests a bias mitigation method. It is shown that the mitigated BMD could generate valuable insights into large-scale public transit systems across 100+ US counties, revealing regional disparities of the recovery of transit systems from the COVID-19. This study underscores the importance of caution when using BMD in transportation research and presents effective mitigation strategies that would benefit practitioners.</div></div>\",\"PeriodicalId\":48974,\"journal\":{\"name\":\"Transportation Letters-The International Journal of Transportation Research\",\"volume\":\"17 4\",\"pages\":\"Pages 762-775\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Letters-The International Journal of Transportation Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1942786724000602\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786724000602","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

大移动数据(BMD)在研究人类移动性和评估交通系统性能方面显示出许多优势。然而,人们对移动大数据的质量仍然知之甚少。本研究...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigating biases in big mobility data: a case study of monitoring large-scale transit systems
Big mobility data (BMD) have shown many advantages in studying human mobility and evaluating the performance of transportation systems. However, the quality of BMD remains poorly understood. This study evaluates biases in BMD and develops mitigation methods. Using Google and Apple mobility data as examples, this study compares them with benchmark data from governmental agencies. Spatio-temporal discrepancies between BMD and benchmark are observed and their impacts on transportation applications are investigated, emphasizing the urgent need to address these biases to prevent misguided policymaking. This study further proposes and tests a bias mitigation method. It is shown that the mitigated BMD could generate valuable insights into large-scale public transit systems across 100+ US counties, revealing regional disparities of the recovery of transit systems from the COVID-19. This study underscores the importance of caution when using BMD in transportation research and presents effective mitigation strategies that would benefit practitioners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
14.30%
发文量
79
审稿时长
>12 weeks
期刊介绍: Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research. The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信