Shifan Zhao, Tianshi Xu, Hua Huang, Edmond Chow, Yuanzhe Xi
{"title":"用于正则化核矩阵的自适应因子化 Nyström 预处理器","authors":"Shifan Zhao, Tianshi Xu, Hua Huang, Edmond Chow, Yuanzhe Xi","doi":"10.1137/23m1565139","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2351-A2376, August 2024. <br/> Abstract. The spectrum of a kernel matrix significantly depends on the parameter values of the kernel function used to define the kernel matrix. This makes it challenging to design a preconditioner for a regularized kernel matrix that is robust across different parameter values. This paper proposes the adaptive factorized Nyström (AFN) preconditioner. The preconditioner is designed for the case where the rank [math] of the Nyström approximation is large, i.e., for kernel function parameters that lead to kernel matrices with eigenvalues that decay slowly. AFN deliberately chooses a well-conditioned submatrix to solve with and corrects a Nyström approximation with a factorized sparse approximate matrix inverse. This makes AFN efficient for kernel matrices with large numerical ranks. AFN also adaptively chooses the size of this submatrix to balance accuracy and cost. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/scalable-matrix/H2Pack/tree/AFN_precond and in the supplementary materials (H2Pack.zip [3.99MB]).","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Factorized Nyström Preconditioner for Regularized Kernel Matrices\",\"authors\":\"Shifan Zhao, Tianshi Xu, Hua Huang, Edmond Chow, Yuanzhe Xi\",\"doi\":\"10.1137/23m1565139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2351-A2376, August 2024. <br/> Abstract. The spectrum of a kernel matrix significantly depends on the parameter values of the kernel function used to define the kernel matrix. This makes it challenging to design a preconditioner for a regularized kernel matrix that is robust across different parameter values. This paper proposes the adaptive factorized Nyström (AFN) preconditioner. The preconditioner is designed for the case where the rank [math] of the Nyström approximation is large, i.e., for kernel function parameters that lead to kernel matrices with eigenvalues that decay slowly. AFN deliberately chooses a well-conditioned submatrix to solve with and corrects a Nyström approximation with a factorized sparse approximate matrix inverse. This makes AFN efficient for kernel matrices with large numerical ranks. AFN also adaptively chooses the size of this submatrix to balance accuracy and cost. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/scalable-matrix/H2Pack/tree/AFN_precond and in the supplementary materials (H2Pack.zip [3.99MB]).\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1565139\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1565139","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Adaptive Factorized Nyström Preconditioner for Regularized Kernel Matrices
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2351-A2376, August 2024. Abstract. The spectrum of a kernel matrix significantly depends on the parameter values of the kernel function used to define the kernel matrix. This makes it challenging to design a preconditioner for a regularized kernel matrix that is robust across different parameter values. This paper proposes the adaptive factorized Nyström (AFN) preconditioner. The preconditioner is designed for the case where the rank [math] of the Nyström approximation is large, i.e., for kernel function parameters that lead to kernel matrices with eigenvalues that decay slowly. AFN deliberately chooses a well-conditioned submatrix to solve with and corrects a Nyström approximation with a factorized sparse approximate matrix inverse. This makes AFN efficient for kernel matrices with large numerical ranks. AFN also adaptively chooses the size of this submatrix to balance accuracy and cost. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/scalable-matrix/H2Pack/tree/AFN_precond and in the supplementary materials (H2Pack.zip [3.99MB]).