Alfredo Iusem, Felipe Lara, Raúl T. Marcavillaca, Le Hai Yen
{"title":"非凸均衡问题的两步近点算法及其在分式编程中的应用","authors":"Alfredo Iusem, Felipe Lara, Raúl T. Marcavillaca, Le Hai Yen","doi":"10.1007/s10898-024-01419-8","DOIUrl":null,"url":null,"abstract":"<p>We present a proximal point type algorithm tailored for tackling pseudomonotone equilibrium problems in a Hilbert space which are not necessarily convex in the second argument of the involved bifunction. Motivated by the extragradient algorithm, we propose a two-step method and we prove that the generated sequence converges strongly to a solution of the nonconvex equilibrium problem under mild assumptions and, also, we establish a linear convergent rate for the iterates. Furthermore, we identify a new class of functions that meet our assumptions, and we provide sufficient conditions for quadratic fractional functions to exhibit strong quasiconvexity. Finally, we perform numerical experiments comparing our algorithm against two alternative methods for classes of nonconvex mixed variational inequalities.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"38 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming\",\"authors\":\"Alfredo Iusem, Felipe Lara, Raúl T. Marcavillaca, Le Hai Yen\",\"doi\":\"10.1007/s10898-024-01419-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a proximal point type algorithm tailored for tackling pseudomonotone equilibrium problems in a Hilbert space which are not necessarily convex in the second argument of the involved bifunction. Motivated by the extragradient algorithm, we propose a two-step method and we prove that the generated sequence converges strongly to a solution of the nonconvex equilibrium problem under mild assumptions and, also, we establish a linear convergent rate for the iterates. Furthermore, we identify a new class of functions that meet our assumptions, and we provide sufficient conditions for quadratic fractional functions to exhibit strong quasiconvexity. Finally, we perform numerical experiments comparing our algorithm against two alternative methods for classes of nonconvex mixed variational inequalities.</p>\",\"PeriodicalId\":15961,\"journal\":{\"name\":\"Journal of Global Optimization\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Global Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01419-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01419-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming
We present a proximal point type algorithm tailored for tackling pseudomonotone equilibrium problems in a Hilbert space which are not necessarily convex in the second argument of the involved bifunction. Motivated by the extragradient algorithm, we propose a two-step method and we prove that the generated sequence converges strongly to a solution of the nonconvex equilibrium problem under mild assumptions and, also, we establish a linear convergent rate for the iterates. Furthermore, we identify a new class of functions that meet our assumptions, and we provide sufficient conditions for quadratic fractional functions to exhibit strong quasiconvexity. Finally, we perform numerical experiments comparing our algorithm against two alternative methods for classes of nonconvex mixed variational inequalities.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.