非凸均衡问题的两步近点算法及其在分式编程中的应用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alfredo Iusem, Felipe Lara, Raúl T. Marcavillaca, Le Hai Yen
{"title":"非凸均衡问题的两步近点算法及其在分式编程中的应用","authors":"Alfredo Iusem, Felipe Lara, Raúl T. Marcavillaca, Le Hai Yen","doi":"10.1007/s10898-024-01419-8","DOIUrl":null,"url":null,"abstract":"<p>We present a proximal point type algorithm tailored for tackling pseudomonotone equilibrium problems in a Hilbert space which are not necessarily convex in the second argument of the involved bifunction. Motivated by the extragradient algorithm, we propose a two-step method and we prove that the generated sequence converges strongly to a solution of the nonconvex equilibrium problem under mild assumptions and, also, we establish a linear convergent rate for the iterates. Furthermore, we identify a new class of functions that meet our assumptions, and we provide sufficient conditions for quadratic fractional functions to exhibit strong quasiconvexity. Finally, we perform numerical experiments comparing our algorithm against two alternative methods for classes of nonconvex mixed variational inequalities.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming\",\"authors\":\"Alfredo Iusem, Felipe Lara, Raúl T. Marcavillaca, Le Hai Yen\",\"doi\":\"10.1007/s10898-024-01419-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a proximal point type algorithm tailored for tackling pseudomonotone equilibrium problems in a Hilbert space which are not necessarily convex in the second argument of the involved bifunction. Motivated by the extragradient algorithm, we propose a two-step method and we prove that the generated sequence converges strongly to a solution of the nonconvex equilibrium problem under mild assumptions and, also, we establish a linear convergent rate for the iterates. Furthermore, we identify a new class of functions that meet our assumptions, and we provide sufficient conditions for quadratic fractional functions to exhibit strong quasiconvexity. Finally, we perform numerical experiments comparing our algorithm against two alternative methods for classes of nonconvex mixed variational inequalities.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01419-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01419-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种近似点类型算法,专门用于处理希尔伯特空间中的伪单调平衡问题,这些问题在所涉及的双函数的第二个参数中不一定是凸的。受外梯度算法的启发,我们提出了一种两步法,并证明在温和的假设条件下,生成的序列强烈收敛于非凸平衡问题的解,同时,我们还建立了迭代的线性收敛速率。此外,我们还发现了一类符合我们假设的新函数,并提供了二次分数函数表现出强准凸性的充分条件。最后,我们还进行了数值实验,将我们的算法与两类非凸混合变分不等式的替代方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming

A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming

We present a proximal point type algorithm tailored for tackling pseudomonotone equilibrium problems in a Hilbert space which are not necessarily convex in the second argument of the involved bifunction. Motivated by the extragradient algorithm, we propose a two-step method and we prove that the generated sequence converges strongly to a solution of the nonconvex equilibrium problem under mild assumptions and, also, we establish a linear convergent rate for the iterates. Furthermore, we identify a new class of functions that meet our assumptions, and we provide sufficient conditions for quadratic fractional functions to exhibit strong quasiconvexity. Finally, we perform numerical experiments comparing our algorithm against two alternative methods for classes of nonconvex mixed variational inequalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信