具有增强同步性的屏蔽式生成视频音频转换器

Santiago Pascual, Chunghsin Yeh, Ioannis Tsiamas, Joan Serrà
{"title":"具有增强同步性的屏蔽式生成视频音频转换器","authors":"Santiago Pascual, Chunghsin Yeh, Ioannis Tsiamas, Joan Serrà","doi":"arxiv-2407.10387","DOIUrl":null,"url":null,"abstract":"Video-to-audio (V2A) generation leverages visual-only video features to\nrender plausible sounds that match the scene. Importantly, the generated sound\nonsets should match the visual actions that are aligned with them, otherwise\nunnatural synchronization artifacts arise. Recent works have explored the\nprogression of conditioning sound generators on still images and then video\nfeatures, focusing on quality and semantic matching while ignoring\nsynchronization, or by sacrificing some amount of quality to focus on improving\nsynchronization only. In this work, we propose a V2A generative model, named\nMaskVAT, that interconnects a full-band high-quality general audio codec with a\nsequence-to-sequence masked generative model. This combination allows modeling\nboth high audio quality, semantic matching, and temporal synchronicity at the\nsame time. Our results show that, by combining a high-quality codec with the\nproper pre-trained audio-visual features and a sequence-to-sequence parallel\nstructure, we are able to yield highly synchronized results on one hand, whilst\nbeing competitive with the state of the art of non-codec generative audio\nmodels. Sample videos and generated audios are available at\nhttps://maskvat.github.io .","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Masked Generative Video-to-Audio Transformers with Enhanced Synchronicity\",\"authors\":\"Santiago Pascual, Chunghsin Yeh, Ioannis Tsiamas, Joan Serrà\",\"doi\":\"arxiv-2407.10387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video-to-audio (V2A) generation leverages visual-only video features to\\nrender plausible sounds that match the scene. Importantly, the generated sound\\nonsets should match the visual actions that are aligned with them, otherwise\\nunnatural synchronization artifacts arise. Recent works have explored the\\nprogression of conditioning sound generators on still images and then video\\nfeatures, focusing on quality and semantic matching while ignoring\\nsynchronization, or by sacrificing some amount of quality to focus on improving\\nsynchronization only. In this work, we propose a V2A generative model, named\\nMaskVAT, that interconnects a full-band high-quality general audio codec with a\\nsequence-to-sequence masked generative model. This combination allows modeling\\nboth high audio quality, semantic matching, and temporal synchronicity at the\\nsame time. Our results show that, by combining a high-quality codec with the\\nproper pre-trained audio-visual features and a sequence-to-sequence parallel\\nstructure, we are able to yield highly synchronized results on one hand, whilst\\nbeing competitive with the state of the art of non-codec generative audio\\nmodels. Sample videos and generated audios are available at\\nhttps://maskvat.github.io .\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.10387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视频-音频(V2A)生成技术利用纯视觉视频特征来生成与场景相匹配的可信声音。重要的是,生成的声音集应与与之对齐的视觉动作相匹配,否则就会产生不自然的同步假象。最近的一些研究已经探索了在静态图像和视频特征上调节声音生成器的方法,这些方法侧重于质量和语义匹配,而忽略了同步性,或者牺牲了一定的质量,只侧重于提高同步性。在这项工作中,我们提出了一种 V2A 生成模型,名为 "MaskVAT",它将全频段高质量通用音频编解码器与序列到序列掩码生成模型相互连接。这种组合可以同时模拟高音频质量、语义匹配和时间同步性。我们的研究结果表明,通过将高质量编解码器与适当的预训练视听特征和序列到序列并行结构相结合,我们一方面能够获得高度同步的结果,另一方面又能与非编解码器生成式音频模型的技术水平相媲美。样本视频和生成的音频可在https://maskvat.github.io。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Masked Generative Video-to-Audio Transformers with Enhanced Synchronicity
Video-to-audio (V2A) generation leverages visual-only video features to render plausible sounds that match the scene. Importantly, the generated sound onsets should match the visual actions that are aligned with them, otherwise unnatural synchronization artifacts arise. Recent works have explored the progression of conditioning sound generators on still images and then video features, focusing on quality and semantic matching while ignoring synchronization, or by sacrificing some amount of quality to focus on improving synchronization only. In this work, we propose a V2A generative model, named MaskVAT, that interconnects a full-band high-quality general audio codec with a sequence-to-sequence masked generative model. This combination allows modeling both high audio quality, semantic matching, and temporal synchronicity at the same time. Our results show that, by combining a high-quality codec with the proper pre-trained audio-visual features and a sequence-to-sequence parallel structure, we are able to yield highly synchronized results on one hand, whilst being competitive with the state of the art of non-codec generative audio models. Sample videos and generated audios are available at https://maskvat.github.io .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信