增强多重呼吸中异常肺音的分类:轻量级多标签和多头注意力分类方法

Yi-Wei Chua, Yun-Chien Cheng
{"title":"增强多重呼吸中异常肺音的分类:轻量级多标签和多头注意力分类方法","authors":"Yi-Wei Chua, Yun-Chien Cheng","doi":"arxiv-2407.10828","DOIUrl":null,"url":null,"abstract":"This study aims to develop an auxiliary diagnostic system for classifying\nabnormal lung respiratory sounds, enhancing the accuracy of automatic abnormal\nbreath sound classification through an innovative multi-label learning approach\nand multi-head attention mechanism. Addressing the issue of class imbalance and\nlack of diversity in existing respiratory sound datasets, our study employs a\nlightweight and highly accurate model, using a two-dimensional label set to\nrepresent multiple respiratory sound characteristics. Our method achieved a\n59.2% ICBHI score in the four-category task on the ICBHI2017 dataset,\ndemonstrating its advantages in terms of lightweight and high accuracy. This\nstudy not only improves the accuracy of automatic diagnosis of lung respiratory\nsound abnormalities but also opens new possibilities for clinical applications.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Enhanced Classification of Abnormal Lung sound in Multi-breath: A Light Weight Multi-label and Multi-head Attention Classification Method\",\"authors\":\"Yi-Wei Chua, Yun-Chien Cheng\",\"doi\":\"arxiv-2407.10828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to develop an auxiliary diagnostic system for classifying\\nabnormal lung respiratory sounds, enhancing the accuracy of automatic abnormal\\nbreath sound classification through an innovative multi-label learning approach\\nand multi-head attention mechanism. Addressing the issue of class imbalance and\\nlack of diversity in existing respiratory sound datasets, our study employs a\\nlightweight and highly accurate model, using a two-dimensional label set to\\nrepresent multiple respiratory sound characteristics. Our method achieved a\\n59.2% ICBHI score in the four-category task on the ICBHI2017 dataset,\\ndemonstrating its advantages in terms of lightweight and high accuracy. This\\nstudy not only improves the accuracy of automatic diagnosis of lung respiratory\\nsound abnormalities but also opens new possibilities for clinical applications.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.10828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在开发一种用于肺部异常呼吸音分类的辅助诊断系统,通过创新的多标签学习方法和多头关注机制提高异常呼吸音自动分类的准确性。针对现有呼吸音数据集类不平衡和缺乏多样性的问题,我们的研究采用了轻量级和高精度模型,使用二维标签集来代表多种呼吸音特征。我们的方法在 ICBHI2017 数据集的四类任务中取得了 59.2% 的 ICBHI 分数,证明了它在轻量级和高准确度方面的优势。这项研究不仅提高了肺部呼吸音异常自动诊断的准确性,也为临床应用提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Enhanced Classification of Abnormal Lung sound in Multi-breath: A Light Weight Multi-label and Multi-head Attention Classification Method
This study aims to develop an auxiliary diagnostic system for classifying abnormal lung respiratory sounds, enhancing the accuracy of automatic abnormal breath sound classification through an innovative multi-label learning approach and multi-head attention mechanism. Addressing the issue of class imbalance and lack of diversity in existing respiratory sound datasets, our study employs a lightweight and highly accurate model, using a two-dimensional label set to represent multiple respiratory sound characteristics. Our method achieved a 59.2% ICBHI score in the four-category task on the ICBHI2017 dataset, demonstrating its advantages in terms of lightweight and high accuracy. This study not only improves the accuracy of automatic diagnosis of lung respiratory sound abnormalities but also opens new possibilities for clinical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信