PyTond:数据库肩上的高效 Python 数据科学

Hesam Shahrokhi, Amirali Kaboli, Mahdi Ghorbani, Amir Shaikhha
{"title":"PyTond:数据库肩上的高效 Python 数据科学","authors":"Hesam Shahrokhi, Amirali Kaboli, Mahdi Ghorbani, Amir Shaikhha","doi":"arxiv-2407.11616","DOIUrl":null,"url":null,"abstract":"Python data science libraries such as Pandas and NumPy have recently gained\nimmense popularity. Although these libraries are feature-rich and easy to use,\ntheir scalability limitations require more robust computational resources. In\nthis paper, we present PyTond, an efficient approach to push the processing of\ndata science workloads down into the database engines that are already known\nfor their big data handling capabilities. Compared to the previous work, by\nintroducing TondIR, our approach can capture a more comprehensive set of\nworkloads and data layouts. Moreover, by doing IR-level optimizations, we\ngenerate better SQL code that improves the query processing by the underlying\ndatabase engine. Our evaluation results show promising performance improvement\ncompared to Python and other alternatives for diverse data science workloads.","PeriodicalId":501197,"journal":{"name":"arXiv - CS - Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PyTond: Efficient Python Data Science on the Shoulders of Databases\",\"authors\":\"Hesam Shahrokhi, Amirali Kaboli, Mahdi Ghorbani, Amir Shaikhha\",\"doi\":\"arxiv-2407.11616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Python data science libraries such as Pandas and NumPy have recently gained\\nimmense popularity. Although these libraries are feature-rich and easy to use,\\ntheir scalability limitations require more robust computational resources. In\\nthis paper, we present PyTond, an efficient approach to push the processing of\\ndata science workloads down into the database engines that are already known\\nfor their big data handling capabilities. Compared to the previous work, by\\nintroducing TondIR, our approach can capture a more comprehensive set of\\nworkloads and data layouts. Moreover, by doing IR-level optimizations, we\\ngenerate better SQL code that improves the query processing by the underlying\\ndatabase engine. Our evaluation results show promising performance improvement\\ncompared to Python and other alternatives for diverse data science workloads.\",\"PeriodicalId\":501197,\"journal\":{\"name\":\"arXiv - CS - Programming Languages\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.11616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Pandas 和 NumPy 等 Python 数据科学库最近大受欢迎。虽然这些库功能丰富且易于使用,但由于其可扩展性的限制,需要更强大的计算资源。在本文中,我们介绍了 PyTond,这是一种将数据科学工作负载的处理推向数据库引擎的高效方法。与之前的工作相比,通过引入 TondIR,我们的方法可以捕获更全面的工作负载和数据布局。此外,通过进行 IR 级优化,我们生成了更好的 SQL 代码,从而改进了底层数据库引擎的查询处理。我们的评估结果表明,与 Python 和其他替代方案相比,我们在各种数据科学工作负载方面的性能都有了很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PyTond: Efficient Python Data Science on the Shoulders of Databases
Python data science libraries such as Pandas and NumPy have recently gained immense popularity. Although these libraries are feature-rich and easy to use, their scalability limitations require more robust computational resources. In this paper, we present PyTond, an efficient approach to push the processing of data science workloads down into the database engines that are already known for their big data handling capabilities. Compared to the previous work, by introducing TondIR, our approach can capture a more comprehensive set of workloads and data layouts. Moreover, by doing IR-level optimizations, we generate better SQL code that improves the query processing by the underlying database engine. Our evaluation results show promising performance improvement compared to Python and other alternatives for diverse data science workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信