非确定自动机中的炸裂

Ivan Baburin, Ryan Cotterell
{"title":"非确定自动机中的炸裂","authors":"Ivan Baburin, Ryan Cotterell","doi":"arxiv-2407.09891","DOIUrl":null,"url":null,"abstract":"In this paper we examine the difficulty of finding an equivalent\ndeterministic automaton when confronted with a non-deterministic one. While for\nsome automata the exponential blow-up in their number of states is unavoidable,\nwe show that in general, any approximation of state complexity with polynomial\nprecision remains PSPACE-hard. The same is true when using the subset\nconstruction to determinize the NFA, meaning that it is PSPACE-hard to predict\nwhether subset construction will produce an exponential ''blow-up'' in the\nnumber of states or not. To give an explanation for its behaviour, we propose\nthe notion of subset complexity, which serves as an upper bound on the size of\nsubset construction. Due to it simple and intuitive nature it allows to\nidentify large classes of automata which can have limited non-determinism and\ncompletely avoid the ''blow-up''. Subset complexity also remains invariant\nunder NFA reversal and allows to predict how the introduction or removal of\ntransitions from the NFA will affect its size.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blow-up in Non-Deterministic Automata\",\"authors\":\"Ivan Baburin, Ryan Cotterell\",\"doi\":\"arxiv-2407.09891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we examine the difficulty of finding an equivalent\\ndeterministic automaton when confronted with a non-deterministic one. While for\\nsome automata the exponential blow-up in their number of states is unavoidable,\\nwe show that in general, any approximation of state complexity with polynomial\\nprecision remains PSPACE-hard. The same is true when using the subset\\nconstruction to determinize the NFA, meaning that it is PSPACE-hard to predict\\nwhether subset construction will produce an exponential ''blow-up'' in the\\nnumber of states or not. To give an explanation for its behaviour, we propose\\nthe notion of subset complexity, which serves as an upper bound on the size of\\nsubset construction. Due to it simple and intuitive nature it allows to\\nidentify large classes of automata which can have limited non-determinism and\\ncompletely avoid the ''blow-up''. Subset complexity also remains invariant\\nunder NFA reversal and allows to predict how the introduction or removal of\\ntransitions from the NFA will affect its size.\",\"PeriodicalId\":501124,\"journal\":{\"name\":\"arXiv - CS - Formal Languages and Automata Theory\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Formal Languages and Automata Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.09891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了在面对非确定性自动机时找到等效的确定性自动机的难度。虽然对于某些自动机来说,其状态数的指数级膨胀是不可避免的,但我们证明,一般来说,任何具有多项式精度的状态复杂性近似仍然是 PSPACE-hard。在使用子集构造确定 NFA 时,情况也是如此,这意味着很难预测子集构造是否会导致状态数呈指数级 "膨胀"。为了解释这种行为,我们提出了子集复杂度的概念,作为子集构造规模的上限。由于子集复杂性简单而直观,它可以识别具有有限非决定性的大类自动机,并完全避免 "炸裂"。子集复杂性在 NFA 反转时也保持不变,并允许预测从 NFA 中引入或移除过渡将如何影响其大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blow-up in Non-Deterministic Automata
In this paper we examine the difficulty of finding an equivalent deterministic automaton when confronted with a non-deterministic one. While for some automata the exponential blow-up in their number of states is unavoidable, we show that in general, any approximation of state complexity with polynomial precision remains PSPACE-hard. The same is true when using the subset construction to determinize the NFA, meaning that it is PSPACE-hard to predict whether subset construction will produce an exponential ''blow-up'' in the number of states or not. To give an explanation for its behaviour, we propose the notion of subset complexity, which serves as an upper bound on the size of subset construction. Due to it simple and intuitive nature it allows to identify large classes of automata which can have limited non-determinism and completely avoid the ''blow-up''. Subset complexity also remains invariant under NFA reversal and allows to predict how the introduction or removal of transitions from the NFA will affect its size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信