{"title":"关于子词封闭语言的状态复杂性","authors":"Jérôme Guyot","doi":"arxiv-2407.10355","DOIUrl":null,"url":null,"abstract":"This paper investigates the state complexities of subword-closed and\nsuperword-closed languages, comparing them to regular languages. We focus on\nthe square root operator and the substitution operator. We establish an\nexponential lower bound for superword-closed languages for the k-th root. For\nsubword-closed languages we analyze in detail a specific instance of the square\nroot problem for which a quadratic complexity is proven. For the substitution\noperator, we show an exponential lower bound for the general substitution. We\nthen find some conditions for which we prove a quadratic upper bound.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On state complexity for subword-closed languages\",\"authors\":\"Jérôme Guyot\",\"doi\":\"arxiv-2407.10355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the state complexities of subword-closed and\\nsuperword-closed languages, comparing them to regular languages. We focus on\\nthe square root operator and the substitution operator. We establish an\\nexponential lower bound for superword-closed languages for the k-th root. For\\nsubword-closed languages we analyze in detail a specific instance of the square\\nroot problem for which a quadratic complexity is proven. For the substitution\\noperator, we show an exponential lower bound for the general substitution. We\\nthen find some conditions for which we prove a quadratic upper bound.\",\"PeriodicalId\":501124,\"journal\":{\"name\":\"arXiv - CS - Formal Languages and Automata Theory\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Formal Languages and Automata Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.10355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper investigates the state complexities of subword-closed and
superword-closed languages, comparing them to regular languages. We focus on
the square root operator and the substitution operator. We establish an
exponential lower bound for superword-closed languages for the k-th root. For
subword-closed languages we analyze in detail a specific instance of the square
root problem for which a quadratic complexity is proven. For the substitution
operator, we show an exponential lower bound for the general substitution. We
then find some conditions for which we prove a quadratic upper bound.