无曲线量子拉夫谢茨

IF 0.9 2区 数学 Q2 MATHEMATICS
Jeongseok Oh, Richard P Thomas
{"title":"无曲线量子拉夫谢茨","authors":"Jeongseok Oh, Richard P Thomas","doi":"10.1093/imrn/rnae158","DOIUrl":null,"url":null,"abstract":"Given one quasi-smooth derived space cut out of another by a section of a 2-term complex of bundles, we give two formulae for its virtual cycle. They are modelled on the the $p$-fields construction of Chang–Li and the Quantum Lefschetz principle, and recover these when applied to moduli spaces of (stable or quasi-) maps. When the complex is a single bundle we recover the results of Kim–Kresch–Pantev.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"53 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Lefschetz Without Curves\",\"authors\":\"Jeongseok Oh, Richard P Thomas\",\"doi\":\"10.1093/imrn/rnae158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given one quasi-smooth derived space cut out of another by a section of a 2-term complex of bundles, we give two formulae for its virtual cycle. They are modelled on the the $p$-fields construction of Chang–Li and the Quantum Lefschetz principle, and recover these when applied to moduli spaces of (stable or quasi-) maps. When the complex is a single bundle we recover the results of Kim–Kresch–Pantev.\",\"PeriodicalId\":14461,\"journal\":{\"name\":\"International Mathematics Research Notices\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematics Research Notices\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae158\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae158","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个准光滑派生空间,从另一个由2项复束的一段切出,我们给出了其虚拟循环的两个公式。它们以张力的 $p$ 场构造和量子列夫谢茨原理为模型,并在应用于(稳定或准)映射的模空间时恢复了这些公式。当复数是单束时,我们恢复了金-克雷施-潘特夫的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Lefschetz Without Curves
Given one quasi-smooth derived space cut out of another by a section of a 2-term complex of bundles, we give two formulae for its virtual cycle. They are modelled on the the $p$-fields construction of Chang–Li and the Quantum Lefschetz principle, and recover these when applied to moduli spaces of (stable or quasi-) maps. When the complex is a single bundle we recover the results of Kim–Kresch–Pantev.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信