端粒酶活性模型中端粒动态的随机分支模型

Athanase BenetosDCAC, Coralie FritschSIMBA, IECL, Emma HortonIRIMAS, ARCHIMEDE, PASTA, Lionel LenotreIRIMAS, ARCHIMEDE, PASTA, Simon ToupanceDCAC, Denis VillemonaisSIMBA, IECL, IUF
{"title":"端粒酶活性模型中端粒动态的随机分支模型","authors":"Athanase BenetosDCAC, Coralie FritschSIMBA, IECL, Emma HortonIRIMAS, ARCHIMEDE, PASTA, Lionel LenotreIRIMAS, ARCHIMEDE, PASTA, Simon ToupanceDCAC, Denis VillemonaisSIMBA, IECL, IUF","doi":"arxiv-2407.11453","DOIUrl":null,"url":null,"abstract":"Telomeres are repetitive sequences of nucleotides at the end of chromosomes,\nwhose evolution over time is intrinsically related to biological ageing. In\nmost cells, with each cell division, telomeres shorten due to the so-called end\nreplication problem, which can lead to replicative senescence and a variety of\nage-related diseases. On the other hand, in certain cells, the presence of the\nenzyme telomerase can lead to the lengthening of telomeres, which may delay or\nprevent the onset of such diseases but can also increase the risk of cancer.In\nthis article, we propose a stochastic representation of this biological model,\nwhich takes into account multiple chromosomes per cell, the effect of\ntelomerase, different cell types and the dependence of the distribution of\ntelomere length on the dynamics of the process. We study theoretical properties\nof this model, including its long-term behaviour. In addition, we investigate\nnumerically the impact of the model parameters on biologically relevant\nquantities, such as the Hayflick limit and the Malthusian parameter of the\npopulation of cells.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic branching models for the telomeres dynamics in a model including telomerase activity\",\"authors\":\"Athanase BenetosDCAC, Coralie FritschSIMBA, IECL, Emma HortonIRIMAS, ARCHIMEDE, PASTA, Lionel LenotreIRIMAS, ARCHIMEDE, PASTA, Simon ToupanceDCAC, Denis VillemonaisSIMBA, IECL, IUF\",\"doi\":\"arxiv-2407.11453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Telomeres are repetitive sequences of nucleotides at the end of chromosomes,\\nwhose evolution over time is intrinsically related to biological ageing. In\\nmost cells, with each cell division, telomeres shorten due to the so-called end\\nreplication problem, which can lead to replicative senescence and a variety of\\nage-related diseases. On the other hand, in certain cells, the presence of the\\nenzyme telomerase can lead to the lengthening of telomeres, which may delay or\\nprevent the onset of such diseases but can also increase the risk of cancer.In\\nthis article, we propose a stochastic representation of this biological model,\\nwhich takes into account multiple chromosomes per cell, the effect of\\ntelomerase, different cell types and the dependence of the distribution of\\ntelomere length on the dynamics of the process. We study theoretical properties\\nof this model, including its long-term behaviour. In addition, we investigate\\nnumerically the impact of the model parameters on biologically relevant\\nquantities, such as the Hayflick limit and the Malthusian parameter of the\\npopulation of cells.\",\"PeriodicalId\":501044,\"journal\":{\"name\":\"arXiv - QuanBio - Populations and Evolution\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Populations and Evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.11453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

端粒是染色体末端核苷酸的重复序列,其随时间的演变与生物衰老有着内在联系。在大多数细胞中,每次细胞分裂后,端粒都会因所谓的末端复制问题而缩短,这可能导致复制衰老和各种与衰老相关的疾病。另一方面,在某些细胞中,端粒酶的存在会导致端粒的延长,这可能会推迟或预防这类疾病的发生,但也可能会增加患癌症的风险。在这篇文章中,我们提出了这一生物模型的随机表示方法,其中考虑到了每个细胞的多条染色体、端粒酶的作用、不同的细胞类型以及端粒长度分布对过程动态的依赖性。我们研究了这一模型的理论特性,包括其长期行为。此外,我们还研究了模型参数对生物学相关量(如海弗里克极限和细胞数量的马尔萨斯参数)的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic branching models for the telomeres dynamics in a model including telomerase activity
Telomeres are repetitive sequences of nucleotides at the end of chromosomes, whose evolution over time is intrinsically related to biological ageing. In most cells, with each cell division, telomeres shorten due to the so-called end replication problem, which can lead to replicative senescence and a variety of age-related diseases. On the other hand, in certain cells, the presence of the enzyme telomerase can lead to the lengthening of telomeres, which may delay or prevent the onset of such diseases but can also increase the risk of cancer.In this article, we propose a stochastic representation of this biological model, which takes into account multiple chromosomes per cell, the effect of telomerase, different cell types and the dependence of the distribution of telomere length on the dynamics of the process. We study theoretical properties of this model, including its long-term behaviour. In addition, we investigate numerically the impact of the model parameters on biologically relevant quantities, such as the Hayflick limit and the Malthusian parameter of the population of cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信