分红人寿保险合同的均值-方差优化

Felix Fießinger, Mitja Stadje
{"title":"分红人寿保险合同的均值-方差优化","authors":"Felix Fießinger, Mitja Stadje","doi":"arxiv-2407.11761","DOIUrl":null,"url":null,"abstract":"This paper studies the equity holders' mean-variance optimal portfolio choice\nproblem for (non-)protected participating life insurance contracts. We derive\nexplicit formulas for the optimal terminal wealth and the optimal strategy in\nthe multi-dimensional Black-Scholes model, showing the existence of all\nnecessary parameters. In incomplete markets, we state Hamilton-Jacobi-Bellman\nequations for the value function. Moreover, we provide a numerical analysis of\nthe Black-Scholes market. The equity holders on average increase their\ninvestment into the risky asset in bad economic states and decrease their\ninvestment over time.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean-Variance Optimization for Participating Life Insurance Contracts\",\"authors\":\"Felix Fießinger, Mitja Stadje\",\"doi\":\"arxiv-2407.11761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the equity holders' mean-variance optimal portfolio choice\\nproblem for (non-)protected participating life insurance contracts. We derive\\nexplicit formulas for the optimal terminal wealth and the optimal strategy in\\nthe multi-dimensional Black-Scholes model, showing the existence of all\\nnecessary parameters. In incomplete markets, we state Hamilton-Jacobi-Bellman\\nequations for the value function. Moreover, we provide a numerical analysis of\\nthe Black-Scholes market. The equity holders on average increase their\\ninvestment into the risky asset in bad economic states and decrease their\\ninvestment over time.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.11761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了(非)保障型分红寿险合同的权益持有人均值-方差最优投资组合选择问题。我们在多维 Black-Scholes 模型中推导出了最优终端财富和最优策略的明确公式,证明了所有必要参数的存在。在不完全市场中,我们提出了价值函数的汉密尔顿-贾可比-贝尔曼方程。此外,我们还对 Black-Scholes 市场进行了数值分析。在经济不景气的情况下,股权持有人平均会增加对风险资产的投资,并随着时间的推移减少投资。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean-Variance Optimization for Participating Life Insurance Contracts
This paper studies the equity holders' mean-variance optimal portfolio choice problem for (non-)protected participating life insurance contracts. We derive explicit formulas for the optimal terminal wealth and the optimal strategy in the multi-dimensional Black-Scholes model, showing the existence of all necessary parameters. In incomplete markets, we state Hamilton-Jacobi-Bellman equations for the value function. Moreover, we provide a numerical analysis of the Black-Scholes market. The equity holders on average increase their investment into the risky asset in bad economic states and decrease their investment over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信