钯锡杂二金属催化中 N-杂环碳烯的影响:对无保护吲哚的 C3-H 功能化的 DFT 支持研究

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Mukesh Kumar Nayak , Rajat Rajiv Maharana , Anuradha Mohanty , Kousik Samanta , Sujit Roy
{"title":"钯锡杂二金属催化中 N-杂环碳烯的影响:对无保护吲哚的 C3-H 功能化的 DFT 支持研究","authors":"Mukesh Kumar Nayak ,&nbsp;Rajat Rajiv Maharana ,&nbsp;Anuradha Mohanty ,&nbsp;Kousik Samanta ,&nbsp;Sujit Roy","doi":"10.1039/d4cy00224e","DOIUrl":null,"url":null,"abstract":"<div><p>A new N-heterocyclic carbene (NHC)-based Pd–Sn heterobimetallic complex [(NHC)Pd(μ-Br)SnCl<sub>3</sub>]<sub>2</sub> with low steric crowding in the active catalytic region was designed. The reactivity of this complex was compared with a previously reported NHC–Pd–Sn complex (NHC)<sub>2</sub>PdBrSnCl<sub>3</sub> towards the C3–H functionalization of indoles with styrenes. The role of NHC in heterobimetallic catalysis was investigated in terms of the density functional theory by comparing the reactivity of these catalysts along with a cyclooctadiene (COD)-based Pd–Sn catalyst (COD)PdClSnCl<sub>3</sub>. Thermochemical calculations revealed that the catalytic cycle is thermodynamically favorable in the case of the NHC-based catalysts but not in the case of the COD-based one. An inverse kinetic isotope effect with a <em>k</em><sub>H</sub>/<em>k</em><sub>D</sub> of 0.44 was detected. This alludes to the migration of a hydride from the metal center to the carbon center being the rate-determining step of the reaction. Based on the experimental and computational findings, an appropriate mechanism is proposed.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of N-heterocyclic carbene in palladium–tin heterobimetallic catalysis: a DFT supported study on the C3–H functionalization of unprotected indoles†\",\"authors\":\"Mukesh Kumar Nayak ,&nbsp;Rajat Rajiv Maharana ,&nbsp;Anuradha Mohanty ,&nbsp;Kousik Samanta ,&nbsp;Sujit Roy\",\"doi\":\"10.1039/d4cy00224e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new N-heterocyclic carbene (NHC)-based Pd–Sn heterobimetallic complex [(NHC)Pd(μ-Br)SnCl<sub>3</sub>]<sub>2</sub> with low steric crowding in the active catalytic region was designed. The reactivity of this complex was compared with a previously reported NHC–Pd–Sn complex (NHC)<sub>2</sub>PdBrSnCl<sub>3</sub> towards the C3–H functionalization of indoles with styrenes. The role of NHC in heterobimetallic catalysis was investigated in terms of the density functional theory by comparing the reactivity of these catalysts along with a cyclooctadiene (COD)-based Pd–Sn catalyst (COD)PdClSnCl<sub>3</sub>. Thermochemical calculations revealed that the catalytic cycle is thermodynamically favorable in the case of the NHC-based catalysts but not in the case of the COD-based one. An inverse kinetic isotope effect with a <em>k</em><sub>H</sub>/<em>k</em><sub>D</sub> of 0.44 was detected. This alludes to the migration of a hydride from the metal center to the carbon center being the rate-determining step of the reaction. Based on the experimental and computational findings, an appropriate mechanism is proposed.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475324003861\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324003861","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究人员设计了一种新的基于 N-杂环碳烯 (NHC) 的钯锡杂双金属配合物 [(NHC)Pd(μ-Br)SnCl3]2,该配合物在活性催化区具有较低的立体拥挤。该复合物的反应活性与之前报道的 NHC-Pd-Sn 复合物 (NHC)2PdBrSnCl3 在吲哚与苯乙烯的 C3-H 功能化反应中的反应活性进行了比较。通过比较这些催化剂与基于环辛二烯(COD)的钯硒催化剂(COD)PdClSnCl3 的反应活性,用密度泛函理论研究了 NHC 在杂多金属催化中的作用。热化学计算显示,NHC 催化剂的催化循环在热力学上是有利的,而 COD 催化剂则不然。还检测到 kH/kD 为 0.44 的反向动力学同位素效应。这表明氢化物从金属中心迁移到碳中心是反应的决定性步骤。根据实验和计算结果,提出了一种适当的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of N-heterocyclic carbene in palladium–tin heterobimetallic catalysis: a DFT supported study on the C3–H functionalization of unprotected indoles†

Effect of N-heterocyclic carbene in palladium–tin heterobimetallic catalysis: a DFT supported study on the C3–H functionalization of unprotected indoles†

Effect of N-heterocyclic carbene in palladium–tin heterobimetallic catalysis: a DFT supported study on the C3–H functionalization of unprotected indoles†

A new N-heterocyclic carbene (NHC)-based Pd–Sn heterobimetallic complex [(NHC)Pd(μ-Br)SnCl3]2 with low steric crowding in the active catalytic region was designed. The reactivity of this complex was compared with a previously reported NHC–Pd–Sn complex (NHC)2PdBrSnCl3 towards the C3–H functionalization of indoles with styrenes. The role of NHC in heterobimetallic catalysis was investigated in terms of the density functional theory by comparing the reactivity of these catalysts along with a cyclooctadiene (COD)-based Pd–Sn catalyst (COD)PdClSnCl3. Thermochemical calculations revealed that the catalytic cycle is thermodynamically favorable in the case of the NHC-based catalysts but not in the case of the COD-based one. An inverse kinetic isotope effect with a kH/kD of 0.44 was detected. This alludes to the migration of a hydride from the metal center to the carbon center being the rate-determining step of the reaction. Based on the experimental and computational findings, an appropriate mechanism is proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信