NiCo2O4-ZnIn2S4 p-n 结的广谱响应可协同光热和光催化效应,实现高效的 H2 演化

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Biao Wang , Yitao Si , Mingyue Du , Shidong Zhao , Jie Huang , Xinyuan Zhao , Shujian Wang , Kejian Lu , Maochang Liu
{"title":"NiCo2O4-ZnIn2S4 p-n 结的广谱响应可协同光热和光催化效应,实现高效的 H2 演化","authors":"Biao Wang ,&nbsp;Yitao Si ,&nbsp;Mingyue Du ,&nbsp;Shidong Zhao ,&nbsp;Jie Huang ,&nbsp;Xinyuan Zhao ,&nbsp;Shujian Wang ,&nbsp;Kejian Lu ,&nbsp;Maochang Liu","doi":"10.1039/d4cy00656a","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we developed a novel approach by creating a flower-like p–n heterojunction, where NiCo<sub>2</sub>O<sub>4</sub> (NCO) nanoparticles are deposited onto a flower-like hierarchical ZnIn<sub>2</sub>S<sub>4</sub> (ZIS) microsphere, to facilitate photocatalytic H<sub>2</sub> evolution from water. Theoretical calculations and experimental results underscore the synergistic effects of the heterojunction and photothermal properties in the NCO–ZIS composite, leading to a significant enhancement in photocatalytic activity. Detailed investigation of the photocatalytic mechanism elucidates how the heterojunction bolsters carrier separation and suppresses carrier recombination, while the photothermal effect broadens light absorption, elevates reaction temperature, accelerates carrier migration, and reduces activation energy. Therefore, the NCO–ZIS heterojunction exhibits exceptional hydrogen evolution performance, reaching 4507 μmol h<sup>−1</sup> g<sup>−1</sup>, which surpasses ZIS alone by 5.04 times. This research lays the groundwork for designing highly active photothermal catalysts with broaden-spectrum solar energy utilization.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broad-spectrum response of NiCo2O4–ZnIn2S4 p–n junction synergizing photothermal and photocatalytic effects for efficient H2 evolution†\",\"authors\":\"Biao Wang ,&nbsp;Yitao Si ,&nbsp;Mingyue Du ,&nbsp;Shidong Zhao ,&nbsp;Jie Huang ,&nbsp;Xinyuan Zhao ,&nbsp;Shujian Wang ,&nbsp;Kejian Lu ,&nbsp;Maochang Liu\",\"doi\":\"10.1039/d4cy00656a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we developed a novel approach by creating a flower-like p–n heterojunction, where NiCo<sub>2</sub>O<sub>4</sub> (NCO) nanoparticles are deposited onto a flower-like hierarchical ZnIn<sub>2</sub>S<sub>4</sub> (ZIS) microsphere, to facilitate photocatalytic H<sub>2</sub> evolution from water. Theoretical calculations and experimental results underscore the synergistic effects of the heterojunction and photothermal properties in the NCO–ZIS composite, leading to a significant enhancement in photocatalytic activity. Detailed investigation of the photocatalytic mechanism elucidates how the heterojunction bolsters carrier separation and suppresses carrier recombination, while the photothermal effect broadens light absorption, elevates reaction temperature, accelerates carrier migration, and reduces activation energy. Therefore, the NCO–ZIS heterojunction exhibits exceptional hydrogen evolution performance, reaching 4507 μmol h<sup>−1</sup> g<sup>−1</sup>, which surpasses ZIS alone by 5.04 times. This research lays the groundwork for designing highly active photothermal catalysts with broaden-spectrum solar energy utilization.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475324003770\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324003770","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们开发了一种新方法,即在花状分层 ZnIn2S4(ZIS)微球上沉积 NiCo2O4(NCO)纳米颗粒,从而形成花状 p-n 异质结,促进光催化水的 H2 演化。理论计算和实验结果表明,NCO-ZIS 复合材料的异质结和光热特性具有协同效应,从而显著提高了光催化活性。对光催化机理的详细研究阐明了异质结如何促进载流子分离和抑制载流子重组,而光热效应如何拓宽光吸收、提高反应温度、加速载流子迁移和降低活化能。因此,NCO-ZIS 异质结表现出优异的氢气进化性能,达到 4507 μmol h-1 g-1,是单独 ZIS 的 5.04 倍。这项研究为设计具有广谱太阳能利用功能的高活性光热催化剂奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Broad-spectrum response of NiCo2O4–ZnIn2S4 p–n junction synergizing photothermal and photocatalytic effects for efficient H2 evolution†

Broad-spectrum response of NiCo2O4–ZnIn2S4 p–n junction synergizing photothermal and photocatalytic effects for efficient H2 evolution†

Broad-spectrum response of NiCo2O4–ZnIn2S4 p–n junction synergizing photothermal and photocatalytic effects for efficient H2 evolution†

In this study, we developed a novel approach by creating a flower-like p–n heterojunction, where NiCo2O4 (NCO) nanoparticles are deposited onto a flower-like hierarchical ZnIn2S4 (ZIS) microsphere, to facilitate photocatalytic H2 evolution from water. Theoretical calculations and experimental results underscore the synergistic effects of the heterojunction and photothermal properties in the NCO–ZIS composite, leading to a significant enhancement in photocatalytic activity. Detailed investigation of the photocatalytic mechanism elucidates how the heterojunction bolsters carrier separation and suppresses carrier recombination, while the photothermal effect broadens light absorption, elevates reaction temperature, accelerates carrier migration, and reduces activation energy. Therefore, the NCO–ZIS heterojunction exhibits exceptional hydrogen evolution performance, reaching 4507 μmol h−1 g−1, which surpasses ZIS alone by 5.04 times. This research lays the groundwork for designing highly active photothermal catalysts with broaden-spectrum solar energy utilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信